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PREFACE

The Engineering Design Handbooks of the U. S. Army Materiel Command
are a coordinated series of handbooks containing basic information and
fundamental data useful in the design and development of Army materiel
and systems.

This text treats a broad class of optimal design problems through use of a
consistent set of computational techniques ideally suited for computer
application to mechanical design problems. No attempt has been made to be
exhaustive in the treatment of optimization techniques or the full range of
mechanical applications. Rather, the class of problems treated is concisely
formulated (in Chapters 4 and following) in terms of design and state
variables that occur in mechanical design. A steepest-descent approach —
which has served as a workhorse, reliable technique in fields such as
aerodynamic system design, control theory, and nonlinear programming — is
developed here for mechanical system design.

Extensive application of design optimization techniques is made in the
field of structural design, as well as in a limited number of specific weapon
design problems. The examples are presented in considerable detail, as they
are encountered in practice, to provide the practicing engineer with insight
into use of the methods for his class of problems. A consistent design
philosophy is maintained throughout the text to assist the designer in
extrapolating the methods to classes of problems that arc only similar
mathematically to the examples treated here.

The text is structured so that it can be understood and used by practicing
engineers with a good background in calculus and matrix theory. Computa-
tional algorithms are stated in considerable detail so that they can be
effectively implemented by junior engineers, with only problem formulation
and general supervision provided by a senior project engineer. As with
virtually all computer aided design techniques, some computing art is
required for effective implementation of these techniques. The detailed
treatment of structural applications in Chapters 5, 7, and 9 should provide
insight into this computational art. References are given to more advanced
literature for proofs of theorems and extensions of methods to other classes
of problems.
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CHAPTER1

ELEMENTS OF COMPUTER AIDED DESIGN

1-1 SYNTHESIS VS ANALYSIS IN ENGI-
NEERING DESIGN

Engineering is defined (Ref. 1) as “the art
or science of making practical application of
the knowledge of pure sciences such as
physics, chemistry, biology, etc.”. Although
broad, this definition implies that the job of
engineering is to synthesize, or put together,
useful systems by applying knowledge and
methods derived from the “pure” sciences.
The meaning of “practical” in the given
definition should be interpreted as best, or
optimal; i.e., the job of engineering design is
to develop the best possible system for the
given application, consistent with the re-
sources allocated to the development phase.
The purpose of this handbook is to present a
class of methods that allow for efficient use
of the computer in the design process.

Since the computer can be viewed simply
as a device to handle large quantities of data
and perform simple algebraic operations and
logic rapidly, it is important to look first into
the role of calculation in design. The usual
approach to design is to conceive of a
candidate system and then test it to see if it
works. Great strides have been made with
digital computers in the past two decades to
allow for numerical analysis as a test of the
idea, or concept, rather than previous cut-and-
try techniques. For example, in structural
design one chooses the configuration and
member sizes, and then tests the structure by
analyzing its response to given loads. If the
structure does not behave as desired, then de-

sign changes are made and the structure is re-
analyzed. This process continues until the
designer is satisfied with his design. This has
been the principal use of the computer in the
design process.

In general, then, before the designer can
assure himself that he has the best system, he
must be capable of analyzing all candidates.
In the past half century, outstanding advances
in engineering analysis have been made. The
digital computer has allowed the engineer to
quantitatively analyze the behavior of systems
that were examined only qualitatively in the
past. The mechanical sciences, particularly,
have benefited from this boom in analysis
capability. Structural analysis, stress analysis,
analysis of mechanisms, and heat transfer
analysis, just to name a few, have made
spectacular advances in the past twenty years.

Until the ecarly 1960’s, and even to the
present day to a lesser extent, the attention of
engineering research has been focused pri-
marily on developing analysis capability. Dur-
ing this period of emphasis on analysis,
inadequate attention was paid to developing a
synthesis, or design, capability that is able to
efficiently use the newly developed analysis
methods. In some of the mechanical sciences,
this problem is particularly acute. In struc-
tural mechanics, for example, it is possible to
analyze a structure under a given loading to
obtain accurate values for stress, displace-
ment, and even natural frequency. It is not
clear, however, how a structure should be laid
out and proportioned to efficiently utilize
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material in order to meet strength require-
ments. A more difficult problem is the pro-
portioning of a structure so as to efficiently
limit displacement and meet constraints on
natural frequency and buckling. For a review
of the state of optimal structural design
through 1967, see Ref. 2.

It appears that the analysis capability
needed for computer aided design is available.
The next problem to be addressed, then, is
the matter of what is meant by best, or
optimum. The idea of best enters very natu-
rally into engineering design efforts. In
profit-motivated industries as well as in
Government laboratories, the objective is to
maximize some return function while satisfy-
ing constraints such as resource allocation,
performance requirements, and human limita-
tions.

Once some return function or measure of
value is chosen and constraints are identified,
the system designer would like to have some
optimal design methodology that is capable of
aiding him in the determination of the best,
or practically best, system. It must be empha-
sized at this point that the search is not for an
automatic optimization technique that can
solve any design problem fed to it. Rather,
the need is for an optimal design methodol-
ogy that can aid the engineer in the imple-
mentation of his concepts and guide him ina
direction which, if continued indefinitely,
would yield a mathematical optimum.

A key challenge to developers of practical
computer aids to designers is to take maxi-
mum advantage of human judgment in the
design process. The potential of interactive
computation and design information display
is only now in a developing stage and holds
promise for significant improvement of the
value of the computer in design.

1-2 THE PHILOSOPHY OF SYSTEM ENGI-
NEERING

In the middle 1950’s a formalized approach
to the development of large-scale, man-made
systems began to appear in the literature, see
Refs. 3, 4, 5. This approach, which has
features common to most problem solving
processes, was given the name “system engi-
neering” and is the very essence of computer
aided design. A feature which sets system
engineering and computer aided design off
from most of the logical problem solving
schemes is the explicit inclusion of key
considerations peculiar to engineering design
of systems. A second important feature of
system engineering is the attention paid to
quantitative description of the system and its
behavior.

The basic idea in system engineering is to
begin with a statement of system require-
ments and objectives, and move in an orga-
nized way toward an optimum system. A
process which illustrates the approach is
shown in Fig. 1-1.

1
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Figure 1-1. A System Engineering Model



The purpose of this text is not to give a
detailed treatment of system engineering, but
rather to present aspects of the theory of
computer aided design, with emphasis on
optimal design. The simplified model of a
system engineering process shows that opti-
mal design is a part of system engineering,
but, indeed, by no means the dominant part.
The purpose of this paragraph is to discuss the
interface of optimal design with the remaining
essential elements of system engineering.

System engineering begins with the identifi-
cation of a need by a potential user of the
system to be developed. It is often the case
that the user knows that he needs a system to
do a job, but he may have difficulty in stating
his needs and objectives quantitatively. It
then becomes the joint responsibility of the
system engineer and user to quantify system
objectives so that a meaningful set of objec-
tives may be established for the development
to follow.

Once the needs and objectives for a system
are identified, it is necessary to define func-
tions that must be performed by the system
and any subsystems that are required. This
process is called function analysis, and its
purpose is to pick out functions or operations
that must be performed in order to accom-
plish the mission required of the system being
developed. These functions then become
lower level objectives for the development of
subsystems. Identification of functions tends
to be qualitative in nature. However, once a
function or operation is identified, it must be
described in quantitative terms, if at all
possible. For example, if a function must
occur quickly, the time allowed should be
specified.

The next step shown in Fig. 1-1 is one of
the most difficult functions in system engi-
neering and certainly the most difficult step
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to describe analytically. Conceptual design, as
its name implies, is the identification of the
various concepts or basic system configura-
tions that might meet the system objectives.
It is desirable in this step to leave the
concepts as general as possible so as not to
eliminate candidate systems that might be
very effective. For example, if the functionto
be performed is to propel a vehicle over the
surface of the earth, conceptual designs might
include wheels, tracks, legs, air cushion, etc.

It is important at this time to identify
ranges of values of parameters describing the
system so that, for any parameter in this
range of values, the system will perform the
functions identified in the previous step, i.e.,
the set of parameters describing admissible
systems is identified. It is at this time that the
experienced designer can be extremely valu-
able in reflecting state-of-the-art capabilities
of technologies involved in the system devel-
opment.

The optimal design step has as its objective
the choice of the undetermined parameters
identified in the previous step. These param-
eters must be in the ranges defined by
technological limitations and system func-
tions. The criterion for choosing system
parameters is maximization of system worth
or value. It should be emphasized that a
mathematically precise optimum may be im-
possible to attain and must therefore serve
only as a goal. Methods for choosing system
parameters should, however, have the prop-
erty that if an optimum does exist, then given
enough patience and computer time, that
optimum should be approached as a limit.

What appears to be the final step in the
system engineering mode] of Fig. 1-1, Descrip-
tion, is, in reality, probably just an inter-
mediate step. Unless the system design pro-
cedure has been unusually effective, the sys-
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tem decided upon will probably not satisfy
the user. More likely, it will probably not
satisfy the system engineering team. Having
the results of one pass through the system
engineering process, the user can probably
remember some constraints which he forgot
to specify and which the optimum system
violates. The designer probably also will see
concepts that he did not see before. Much as
the user, he too will remember technological
constraints which he forgot to specify and
which the optimum system violates. Finally,
the sponsoring activity will undoubtedly de-
cide that it will be all right to decrease the
measure of system value a small amount if it
will save some money.

The next step in the procedure is for each
member of the team to take a deep breath,
sigh, and go back to work, armed with his
hard earned new knowledge. It is for this
purpose that all the feedback paths in the
model of Fig. 1-1 are shown. This iterative
procedure is then continued until the sponsor-
ing activity decides that the system developed
is what it really needs. This will probably be
another human decision, rather than a pro-
grammed mathematical one.

The remaining chapters will be devoted to
the problem of computer aided and optimal
design. If the design methods presented later
are to be of maximum value to the reader, he
must have a clear picture of how these
methods fit into the larger problem of system
engineering. For further literature on the
basic ideas involved in system engineering, see
Refs. 3,4, and 5.

1-3 COMPUTER AIDED DESIGN IN THE
MECHANICAL SCIENCES

The theory of computer aided and optimal
design is developed in subsequent chapters as
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it applies to the mechanical sciences. There
are peculiarities of mechanical design, as
opposed to classical control system design,
which require specialized treatment. Further,
the mathematics involved in mechanical sys-
tem design is quite different from the math-
ematics of control theory. These distinctions
are highlighted throughout the text.

In the chapters that follow, optimal control
theory is interpreted as treating feedback
controllers; i.e., an optimal control system has
active elements that sense errors in output,
due to fluctuations in inputs, and adjust
system controls so as to maximize some
measure of system performance. Optimal de-
sign, on the other hand, is taken as the
problem of choosing system eclements or
parameters describing these elements, which
are fixed for the life of the elements, so that
the system is optimum in some sense. In
control literature this is called open loop
control. The principal difference in the two
problems is that the variables chosen in the
optimal design problem are fixed for the life
of the system, whereas variables in a feedback
control device are to be adjusted according to
inputs as the system operates. Mathematical-
ly, the difference in the two results is that the
control law describes how the system vari-
ables should be adjusted as a function of the
state of the system, whereas an optimum
design is simply a set of parameters describing
system eclements and will not be changed
during the life of the system. This distinction
is not uniform in the control literature but is
used here to identify the class of problems
treated.

In most literature on control problems,
sequential systems are treated, i.e., operations
of the system progress one after another as if .
they were occurring in time in a pre-arranged
order. Many optimal design problems are not



of this kind. For example, in designing a
structure one must be concerned with stresses
due to applied loads. These stresses are
interpreted as the state of the structural
system. They are determined by a boundary-
value problem that cannot be interpreted as a
sequential process (initial-value problem). In
some design problems it is possible to define
auxiliary variables so that the governing equa-
tions form an initial-value problem with addi-
tional constraints. This procedure, however,
generally complicates the problem unneces-
sarily. For this reason the problems in
succeeding chapters are formulated as bound-
ary as opposed to initial-value problems.

In order to illustrate the use of the meth-
ods presented, applications are made pri-
marily in optimal structural design. Applica-
tions are chosen to illustrate the use of the
methods on problems having a number of
design variables which might be found in
engineering applications. Further, since many
of the methods are relatively new, it is
anticipated that improvements in computa-
tional efficiency may be realized in specific
problems if advantage is taken of special
features of the class of problems treated.

It is appropriate to highlight a significant
computational distinction between two
classes of design problem. The reader may
note that Chapters 2 through 5 of this text
deal with problems in which system design
and performance are specified by a finite
number of parameters (real numbers). Chap-
ters 6 through 9, on the other hand, deal with
systems that are described by functions on
some given space or time domain. Mathemati-
cally, these problems are called finite and
infinite dimensional, respectively. Optimiza-
tion theory for these two classes of problems
can be put in the same form, but there are
very real differences in the computational
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techniques available for design optimization.
Since the subject of this handbook is com-
puter aids to design, the practical distinction
is made here. For a unifying mathematical
treatment, the reader is referred to Ref. 7.

Finally, it is important to realize that
engineering design optimization and engineer-
ing analysis are fundamentally different in
nature. In analysis, one is generally assured
that a solution exists and numerical methods
are generally stable. In optimal design, on the
other hand, existence of even a nominal
design satisfying objectives is not assured,
much less existence of an optimal design.
Moreover, even when an optimum exists,
numerical methods for its solution are often
quite sensitive to initial estimates and require
much computational art for iterative con-
vergence. These properties will be observed
over and over in this handbook when example
problems are treated.

It is important that the reader take a
mathematical outlook when doing computer
aided design and optimization. A purely
intuitive approach can lead to erroneous
results that may not be apparent until some-
one happens onto a nominal design which is
vastly superior to a “supposed” optimum
design.

1-4 MATHEMATICAL PRELIMINARIES

The level of mathematical background re-
quired for an understanding of the methods
of optimal design presented in the following
chapters is a course in advanced calculus and
the ability to use matrix notation. Since
engineers often require results of rather deep
mathematical analyses to solve real-world
problems, several results have been accepted
with references given to proofs. The purpose
of this paragraph is to present notation and
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some basic mathematical ideas used through-
out the text.

Since most real-world problems involve
several parameters, it is convenient to utilize
vector notation. For example, rather than
writing x ..., x,, repeatedly, these n variables
are collected into a column vector

Xy

x=- |- (1-1)

Unless otherwise noted, all vector variables
will be column vectors. A vector of the form
(Eq. 1-1) may be interpreted as a point in
n-dimensional real space, R" . The space R" is
simply the collection of all n-vectors of real
mumbers. For example, the real ling isR' and
the plane isR?.

It will often be convenient to deal with a
collection of points in the space R". A
collection of points D in R"” will be called a
set, or a subset of R". A point x inR"” which
is in D will be denoted x€D. This will be the
extent of set notation required in later chap-
ters.

In R”" there is a well defined idea of length
of a vector. This analog of length in the real
world will be denoted

n 1/2
Ix k= |iZi 2 (1-2)

and is called a norm on R”. There are many
norms defined on R" but Eq. 1-2 will be
sufficient for the purposes of this text. Along
with the idea of norm on R" goes the concept
of dot product or inner product. The inner
product of two elementsx and y of R” is

(1-3)

- .T 4
<x,y>=x'y=3Txy
=1

1-6

Two vectors are called orthogonal if their
inner product is zero.

The idea of convergence of a sequence
{ xi}in R" with norm (Eq. 1-2)is much like
convergence of real numbers. That is, i x* =
x if for any £ > O there isanN > O such that
[[x* —x|l < E for all i> N. An important
property of sets in optimization theory is
closedness. A subset D of R is called closed
if every sequence in D which converges has its
limit inD.

Just as the idea of collecting n real numbers
into a vector in R", it is helpful to define a
vector functiong(x) for x€R" as

g, ()

gx)=| - : (1-4)
g (%)

Such a function is called continuous at x if
for any £ > O there is a 6 > O suchthat || g(x)
—g(f)llm < Eif |x—x ||, < 6.The subscripts
m and n on the norms denote the dimension
of the space on which the norm is defined.

It will often be desirable to deal with a set
of functions which satisfy

g (x)<0,i=1,...,m . (1-5)

In this case it is convenient to define inequal-
ity among vectors as

gx) <0 (1-6)

where inequality is taken componentwise, i.e.,
Eq. 1-6 is defined to mean the same thing as
Eq. 1-5.

One of the most useful notations in the
following chapters is the idea of the derivative
of a vector function with respect to its vector



variable. This notation is

dg (x) 0g; (x)

dx ax]. mx n a-7n

where i is a row index and j is a column index.
If f(x) is a real valued function of xER", this
notation is

df x) = ag(x),...
d;cc [ X

» 0 () 1-8
1 T‘] -
The derivative of a real valued function is
often called the gradient of that function and
is denoted

VS (x) = df(’” : (1-9)

The gradient is one of the few standard
symbols which denotes a row vector rather
than a column vector. Likewise, for a real
valued function the matrix of second deriva-
tives may be defined as the matrix

I =V2f(x) = = . (1-10)

An important theorem in the analysis of
functions appearing in optimal design prob-
lems is Taylor's Theorem.

Taylor's Theorem: Let the real valued
function f(x) have £ + 1 continuous deriva-
tives in R” . Then for x€R”, there is a point
E=ox +(1 —a)y with 0 < a< 1, such that

o =fo+ 2 L0y aan
i=1 6x,.
WLy g Y Y, — x,)
27=1i= 1ax ax (y %
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3 ak
+...+—1.. I'._k — f(x),- X
k! it... .t = axll_axnn
Gy =2 - x,)"
b1 I k! fe)
(k+Dlj +. . +i,=k+] a.  ...at

01— x) o, —x)

For proof of this theorem see Ref. 6, page 56.

In many places in the following chapters,
Taylor's Theorem will be used to obtain an
approximate expression for a function at a
point sufficiently near a point where the
function is known. The most common ap-
proximation is the one obtained by deleting
second and higher order terms. For example,
if Ilx — ¥l is small,

f(x)

) —flx) =~ o —x) (1-12)

where by Eq. 1-11 the error in Eq. 1-12 is
at most a constant times ||y — x| if f(x) has
bounded second order derivatives. The left
side of Eq. 1-12 is generally denoted by
6f(x), where ¥ — x is denoted 6x. In this
notation,

8f(x) =ga’:—6x. (1-13)

Eq. 1-13 may be thought of as a total
differential. Even for vector functions g(x),
Eq. 1-13 holds for each component so if

8g (x) = [8g,(x), . . ., 88,,(x)17, then
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6g(x) =dgd(Tx)6x. (1-14)

In later work, g(x) will often be a function
of x€R" and z€RP. In this case, Eq. 1-141is

_ o0g(x,z) S + 0g(x,z) 52

1-15
ox oz ( )

6g(x,z)

where

ag(x,z) | %8:x2)

ox axj o
and
aglx,z) | %82
dz 3z, ‘
7 m X p

Most of the common notation used in later
chapters now has been defined. Special nota-
tion and results required locally for some
development will be defined and used there.

1-6 ILLUSTRATIVE MILITARY COM-

PUTER AIDED DESIGN PROBLEMS

In this paragraph two illustrative military
optimal design problems are formulated, and
computer aided design techniques are out-
lined for their solution. The treatment here is
only for the purpose of introducing concepts.
These examples are treated in more depth in
Chapters 7 and 8.

1-6.1 OPTIMAL DESIGN OF STRUCTURES

The optimization technique described in
this paragraph was initially developed for
application to minimum weight structural
design problems. For this reason, and to give
an engineering feel for application of the
technique, the method will be presented along
with examples from the field of optimal
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structural design.

As a specific example, let us consider a
design problem whereby a highly directional
transmission device, or perhaps a gun, is to be
mounted on a tower or gun mount that is
required to support the device at some given
distance away from the basic supporting
structure, such as the earth. A schematic of
the problem is shown in Fig. 1-2. The basic

g<[

Figure 1-2. Structural Requirement

problem is to design a structure that supports
the device under consideration and which is as
light as possible for purposes of transporta-
tion and erection on the battlefield, or per-
haps mounting on a helicopter. A basic design
requirement for this structure is that the
device mounted on the top shall not have an
angular deflection of more than 8 radians, in
order to hit the receiver or target. The loading
that is to be considered is a wind load of up
to a givenvelocity, which would cause angular
deflection of the top of the tower.

The needs and objectives in this design
problem are well established, so no additional
inputs need be considered at the present time.
Further, the requirement that the tower
support the device with only a given allowable
angular deflection is the only basic function
required of the tower; thus the function
analysis block of Fig. 1-1 is also complete.
The next stage, and one that is quite difficult
to describe analytically, is that of arriving at



conceptual towers which might perform the
given mission.

Four different conceptual designs are
shown in Fig. 1-3. The first two concepts,

bl

Y
=
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Figs. 1-3(A) and (B), involve rigidly fixing the
tower at its base to the fundamental support-
ing structure. In both towers, variable spacing
as a function of height is allowed between
vertical members of the structure. In addition,

bi
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Figure 1-3. Conceptual Designs

one of the concepts allows for varying the
arca of the main structural members as a
function of height. The second set of con-
cepts, Figs. 1-3(C) and (D), involves towers
that are pinned at their base to the supporting
structure and that are supported by guy wires
at the top of the structure. Likewise, in both
of these concepts, variable spacing of the
main vertical members is allowed. In the
second concept, variation of arca along the
length of the tower is also allowed. It should
be noted that the conceptual designs in Fig.
1-3 can have as many subsections with differ-

ent area and spacing as desired. Three are
shown for convenience in the figure.

In each of the conceptual towers of Fig.
1-3, the variables b; through &3 describe the
variable spacing of the members of the tower.
In two of the concepts, Figs. 1-3(B) and (D),
b, through b, specify the variable areas in
the construction of the main vertical member.
These variables serve as design parameters, in
that the designer can choose these variables
and completely specify the design of the
tower.

1-9
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In addition to the design variables, a main
part of the design problem is the behavior of
the structure under wind load, since one of
the major constraints on behavior of the
structure is that the angular deflection of the
top of the tower not exceed an angle . For
this reason, the angular deflection of each of
the joints must be determined, along with
lateral deflection due to lateral wind loading.
This is a relatively routine analysis problem
when one uses the techniques of finite ele-
ment structural analysis. Not shown in Fig.
1-3, but required in the construction, are
cross members which maintain spacing of the
main vertical members. In order to state the
optimal design problem mathematically, first
define vectors of design variables »; and state
variables z,

b=[b,by,...b 1}T

m
(1-16)
= T
z_[z;yz2""zn] :
Using finite element structural analysis tech-
niques, define the stiffness matrix as

A®) = la; O,y (1-17)

where the dependence of stiffness on the
design variables is explicitly shown. Using this
matrix, the structural response is given by the
following matrix equation

A(b)z=q (1-18)
where ¢ is the wind loading matrix.

Now that the relationship between the
design variables and the structural response is
specified by Eq. 1-18, the next step in
formulating an optimal design problem is the
identification of constraints. In order to
prevent dimensions or structural areas from
going to zero, resulting in an unstable struc-
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ture, it is required that the design variables be
bounded uniformly away from zero. This is
given formally by the inequality

b;> b, > 0,i=1,...,m. (1-19)

The fundamental constraint in the present
problem is that the angular deflection at the
top of the tower not exceed the angle 6. This
is expressed analytically by the inequality

lz,l< €. (1-20)

The final step in formulation of an optimal
design problem is to identify the cost func-
tion to be minimized. In the present case, the
cost function is structural weight J and is
given by an expression of the form

m
J=v T cb, (1-21)

i=1

where v is material density and ¢, are weight-
ing factors representing lengths of structural
elements and weight requirements for lateral
stiffners.

We now have an optimal structural design
problem that is well formulated from a
mathematical point of view. The objective is
to find the design variables b, through b,
that satisfy constraint Eqs. 1-19and 1-20,and
which minimize the structural weight as given
by Eq. 1-21. The technique used to solve this
problem, and in fact a large class of optimal
system design problems, is based on a very
simple idea of engineering design. The idea of
the technique is to allow small variations in
some nominal design, and analyze the effect
of these variations on the equations of the
problem and the cost function associated with
the problem. As a result of allowing only
small design changes, certain approximations



may be made that allow the best change in
design variables to be determined in order to
decrease the cost function of the problem as
much as possible, while still not violating
constraints of the design problem. For
example, one might choose as an initial
estimate of the optimal design a uniform
tower as shown in Fig. 1-4. The estimated
design variable in this case is denoted by 5(?).

W

Figure 1-4. Uniform Initial Design

Let 8b be a small change in the design
variable 5(®). Any change in the design
variable will result in a change in the struc-
tural response, denoted by 8z. The nature of
the structural analysis problem guarantees
that small 6b yields small 8z. Further, a
Taylor series approximation of terms appear-
ing in Eq. 1- 18yields

a
0) =1 =
A8z +— (4B )80 =0. (1-22)

If an inequality constraint is violated, such
as

b, < b, (1-23)

H to

then in order to correct the constraint error it
is required that
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8b; > by, —b;. (1-24)

Or, if the angular deflection constraint is
violated, for example,

z > ¢ (1-25)
then, to correct the constraint error it is
required that

6z, < €—1z,. (1-26)

Finally, the change in structural weight due to
the change in design 65 is given by

m
8J =% ¢,8b,. (1-27)

The object of the new problem is to
determine 65 so as to minimize the linearized
cost function of Eq. 1-27, subject to con-
straint Egs. 1-24 and 1-26. Due to the special
nature of this problem, the optimum change
6b can be determined in closed form. For a
detailed derivation of this optimum perturba-
tion, the reader is referred to Chapter 5. For
discussion here, the results of this calculation
will be denoted by

8b=nB+C (1-28)

where the vectors B and C depend on 5(0),
constraint errors, and equations of the prob-
lem. The parameter 1 is an undetermined
parameter that plays the role of a step size,
when viewed in the geometry of design
variable space. For example, if there are only
two design parameters b, and b,, the direc-
tion of the desired change is shown by B in
Fig. 1-5, and n is a step size along that
direction. In the terminology of optimization
theory, B is known as the direction of
steepest descent. It is analogous to the direc-
tion one would go downbhill in order to reduce
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Optimum
L ]

»©

Figure 1.-5. Direction of Steepest Descent

his altitude as rapidly as possible. It is clear
that on normal hills, as in most design cost
functions, the direction of steepest descent
changes, depending on thc loeation on that
hill. For this reason, the direction of steepest-
descent does not generally pass through the
optimum point as shown in Fig, 1-5.

There are many techniques for choosing
the step size . The one used in the steepest

(A) One Design Variable

descent method is based on requesting a
certain rcduetion in the cost function due to
the changed 6b. This request, then, deter-
mines the step sizcn and one can calculate 8
from Eq. 1-28. This 65 is the best change in
the estimated design variable 5(°). This best
change is then addcd to the initial estimate to
obtain a new estimate that corresponds to a
structure of less weight and that still satisfies
the constraints of the problem, i.e.,

b1 =p0) + 5p. (1-29)

This proeess is rcpeated as many times as
required to obtain convergence to the mini-
mum weight strueturc.

The optimum towers for each of the four
basic configurations chosen are shown in Figs.
1-6 and 1-7, with a table of results being given
in Table 1-1. Thesc results were obtained

(B) Two Design Variable

Figure 1-6. Tower With Base Rigidly Fastened to the Earth
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using a finite element model with approxi-
mately forty elements so that the resulting
structure has an essentially continuous distri-
bution of material and spacing. The weights
shown in Table 1-1, corresponding to no
design variables are simply the weights of the
optimum towers having uniform members and
no variation in spacing. Note that there is a
significant reduction in structural weight for
the tapered optimum towers over uniform
towers. Extensive examples of this kind are
presented in Chapters 5, 7, and 9.

1-56.2 APPLICATION OF THE STEEPEST
DESCENT METHOD IN INTERAC-
TIVE COMPUTER AIDED DESIGN

Very often in design problems, it is not
practical to specify a unique cost function to
be minimized, hence the formal optimization
problem described in par. 1-5.1 does not
apply directly. The fact that the vector B in
Eq. 1-28 is a direction of steepest descent,
however, is extremely valuable information to
a designer. The application of this informa-
tion to a structural design problem, using
interactive graphics, is a technique which
shows considerable promise in design.
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(A) One Design (B} Two Design
Variable Variable

Figure 1-7. Tower With Base Simply Supported
and Top Supported With Guy Lines

Consider, for example, the problem treated
in par. 1-5.1. The initial estimate of the
optimum tower was taken as a uniform tower.
The components of the vector 65 can be
projected on a cathode ray tube, along with a
picture of the structure as shown in Fig. 1-8.
The algebraic sign of the components of 65,
corresponding to each of the design variables,
is an indication of the effect a change in that
design variable will have on the cost function

TABLE 1-1
WEIGHTS OF TOWERS

Guy-line Guy-line Guy-line

Cantilevered Cantilevered Cantilevered Supported Supported Supported
Number of
Design
Variables 0 1 0 1 2
BestWeight W =244061b W=21114 W= 18279 W=1563.99 W= 13566 W= 1265.71
Height h =637 in. hyax = 91.4 hhax = 802 h=46 . h =465, h = 36.55
Cross-sec-
tional area of
member A=796b A =697 LA =1003 A=384 A =4434 Amax =495
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5b,
sb,

sb,
6b5

sbg
sbg

VLl

Figure 1-8. Sensitivity to Design Variations

of interest. For example, if 6b; were positive,
this would indicate that an increase in the
dimension b, will decrcase the structural
weight. On the other hand if the algebraic sign
of 85, were negative, then an increase in 86,
would increase the structural weight. Like-
wise, the algebraic signs of &b, through
&be indicate the effect that a change in these
element areas will have on structural weight.
These data give the designer valuable informa-
tion, according to which he should change his
nominal design to improve the structure,
while still satisfying all the essential con-
straints.

Traditionally, in structural design by graph-
ics, the designer puts areas and dimensions
into a structural analysis routine and then
requests a stress calculation, the results of
which are shown on the screen of a cathode
ray tube. This technique has been used by
Lockheed-Georgia in the design of the CSA.
While this technique has been quite useful in
structural design, it is extremely difficult for
the designer with only stress information to
determine how he should change just one
element in the structure to reduce overall
structural weight. The difficulty comesin the
interplay between structural constraints. If,

1-14

on the other hand, the designer has trend
information that he can use in altering the
distribution of material in a structure, he can
better use his experience in making design
improvements. This capability can be invalu-
able to large-scale structural designers. It
includes the effect of individual design vari-
able changes on overall structural value, while
taking into account the effect of that design
change on all design constraints.

In real-world structural design problems,
the designer must design his structure for
more than simply light weight. He must be
concerned with structural vibration and
buckling characteristics, since these are major
sources of structural failure. Often, as in par.
1-5.1, it is possible to determine design
perturbations that have a desirable effect on
such structural properties as natural fre-
quency and weight simultaneously. Both of
these factors can then be displayed on a
cathode ray tube as shown in Fig. 1-9. In this
case, 6b! indicates the direction in which the
design variable should be changed to reduce
structural weight, and 862 indicates the direc-
tion in which the variable should be changed
to increase natural frequency. This informa-
tion can then be used by experienced design

1
Sbl
2
Sbl
1 2
Sbl 6b4,6b4
2
1 2
8b by , b
1
. Sba
sbl ., sb2
2 6 6
Sba
VA4 /7 /7 7

Figure 1-9. Sensitivity to Two Performance
Indicators



personnel in making design changes that will
have desirable effects on overall aircraft struc-
tural properties, for example. This is extreme-
ly important in large-scale structural design
due to the difficulty in determining the effect
of changes in an individual design parameter
on several different structural properties.
Computation of these data and interactive
aspects of the techmique are discussed in
Chapter 5.

This design technique is feasible from a
computational point of view in that very little
additional computer time is required to
generate sensitivity information from stress
and vibration analyses that are required. While
most structural optimization work has been
done in the batch mode, it is shown in
Chapter 5 that utilization of the steepest-
descent technique with interactive graphics is
a much more practical way to design struc-
tures, particularly in cases where several
measures of structural performance are im-
portant.

Development and display of sensitivity
information in design is a form of information
transfer to design personnel. This technique
depends on the availability of interactive
graphics software and hardware, which are
currently being developed.

1-6.3 DESIGN OF ARTILLERY RECOIL
MECHANISMS

As an application of this same optimization
technique to a weapon design problem, cer-
tain aspects of the design of a lightweight
artillery piece will now be outlined. The
requirement was stated for a lightweight
artillery piece that can be fired with very
short implacement time. For this reason it
was determined that the weapon must be
capable of being fired while it is resting on its
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tires. A photograph of the first prototype of
this weapon is shown in Fig. 1-10.

The recoil mechanism for this weapon was
designed according to traditional recoil mech-
anism design goals. Namely, the objective in
the design was for a constant retarding force
which is transmitted by the recoil mechanism
to the undercarriage, as shown in Fig. 1-11. A
recoil mechanism was designed which de-
livered approximately this recoil force R(f) as
a function of time.

When the weapon was built and fired, a
nearly constant recoil occurred, as desired;
but, at high angles of fire, the weapon
exhibited unacceptable dynamic response.
During firing, the tires of the weapon com-
pressed and after firing and the subsequent
release of the recoil forces, the weapon
rebounded off the ground approximately 6 in.
This unacceptable behavior required a re-
design cycle for the recoil mechanism with a
design goal of minimizing the dynamic re-
sponse, or hop, of the weapon after firing.

It was determined that the peak recoil
force could be allowed to reach 22,000 Ib
without damaging the support structure. The
optimization problem is then to determine
the recoil force R(¢) as a function time such
that

R(r) <22,000 (1-30)
and the peak dynamic response, denoted by
J= max {h(£)] (1-31)

is as small as possible, where /() is the height
of the tires off the ground at any time ¢.
Graphically, this problem is to determine a
recoil force which lies beneath the 22,000-1b
level in Fig. 1-12, and which minimizes the
peak dynamic response of the weapon. In this
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Figure +10. Howitzer, Towed, 105mm, XM 164

problem, the dynamic response #(#) is deter- The same philosophy of small design
mined by the second order differential equa- changes about some nominal estimate, as in
tions of motion of the artillery piece. the structural design problem of par. 1-5.1,
was employed in this case. A sensitivity
Rt R(t)

22,000
. 20,000+ ’— R
= = :
g 8
: :
F 3
& 8

t
Time, sec Time, sec

Figure 1- 11. Traditional Recoil Design Goal Figure 1- 12. Recoil Distribution in Time
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function is first determined, which indicatcs
the desirable direction of change in the
nominal dcsign variable. For example, taking
thc previously designed constant retarding
force as the nominal base line, a sensitivity
function is determined as shown in Fig. 1-13.
If a constant multiple of this function is
addcd to the retarding force, a reduction will
occur in peak dynamic response and othcr
constraints of the problem will continue to be
satisficd. The dotted curve in Fig. 1-13 shows
the altered design, which gives better charac-
teristics than the original design estimate.

R{1)
22,000
20,000 T ey
3 ... RO ()
2
<
)
g3
&) S
= Sensitivity
Function
pr == - ¢
e p—————
Time, sec

Figure 1- 13. Sensitivity to Gun Hop
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22,000 R(t)

Recoil Force
Rft), b

Time, sec

Figure 1- 14. Optimum Recoil Curve

This sensitivity information could easily be
displayed on the screen of a cathode ray tubc
and could be used by design personncl in
detcrmining desirable changes in the rccoil
dcsign. Even in this relatively simple problcm
it was not clear in what way the design should
be altered to obtain improved responsc of the
artillery piece. This particular problem was
solved in the batch mode by doing many
small step iterations of the kind previously
described until convergence to an optimum
was obtained. The optimum recoil force curve
is shown in Fig. 1-14 and resulted in a pcak
dynamic response of less than 0.5 in. Detailed
solution of this problem is presentcd in
Chapter 8, par. 8-5.
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CHAPTER 2

FINITE DIMENSIONAL UNCONSTRAINED OPTIMIZATION

2-1 INTRODUCTION

In many engineering design problems cer-
tain information which helps to prescribe the
object being designed is specified. However, a
certain number of parameters called design
parameters are left open to the designer’s
choice. These parameters must uniquely
determine the object if the optimal design
problem is to be meaningful. In the discussion
which follows, the design parameters will be

denoted by x,; ..x, or in vector notation
simply as x =(x, ..., x,)T.

In virtually all design problems there are
restrictions on the object being designed.
These may include the performance required,
physical limitations such as size, weight,
resource limitations, and organizational poli-
cy. These restrictions or constraints generally
will involve the design parameters so that the
range of values of design parameters may be
restricted. If the vector of design parameters
(hereafter called the design parameter) is
viewed as an element of real Euclidean space
R, then the effect of the listed restrictions is
to confine the designer’s choice of design
parameters to a subset D of R” called the
admissible set of design parameters. The
nature of this set will be determined by the
nature of the requirements placed on the
system being designed. This aspect of the
optimal design problem will be treated ex-
tensively in later chapters.

When one speaks of optimal design, he

must be able ¢t !:oo0se, out of a collection of
objects which satisfy the restrictions of the
preceding paragraph, that cne which is
“best”. More specifically, out of all design
parameters in the admissible set D, the de-
signer must pick that one, x, which describes
the “best” system. This discussion has still
not given the meaning of “best”. An effective
way of defining “best” is to give a real valued
function whose domain of definition is the
admissible set D, say f(x). “Best”, then, may
be taken as the minimum or maximum of f(x)
for x in D. If the function f(x) is a cost of the
system being designed, then it is to be
minimized. If, on the other hand, f(x) isa
return or profit, it is to be maximized.

The cost or return function will be defined
in each optimal design problem. As a result,
very little can be said about its nature in
general. It is clear, however, that maximizing
a real valued function r(x) is equivalent to
minimizing — r(x). Therefore, optimal d:sign
problems may always be put into 1 form
which may be interpreted as minimization of
a cost function. For convenience this will be
done in the following development.

Example 2-1: As a hypothetical optimal
design problem let the scalar x be the design
parameter and f(x) = (x — 2)? be the cost
function. In Fig. 2-1 the cost function is
plotted versus x. It is clear that the minimum
cost of zero occursat x = 2.

Example 2-1 is included here as an aid to
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intuition in more complex problems. Even
when x is an n-vector, one can think of

plotting the cost function above the x-hyper-
plane to obtain the cost surface. The optimal
design problem is then to find the lowest
point on this surface.

Even though real-world optimal design
problems invariably have constraints placed
on the design parameter, the methods pre-
sented in this chapter will ignore constraints.
There are two reasons for considering this
simplified problem in some detail. First, it
may happen that the design parameter x that
minimizes f(x) lies in the interior of the
admissible set D. In this case the constraints
play no part in locating X. Second, even
though the point x may push some constraint
to its limit and lie on the boundary of D,
there are iterative methods for finding x
which require minimization of an auxiliary
cost function, subject to no constraints at
each iteration. Methods which take con-
straints into account are presented in Chap-
ters 3 and 4.

Two basically different methods of solving
unconstrained minimization problems are pre-
sented in this chapter. The first method,
called the indirect method, is based on de-
rived properties of the cost function at its
minimum; i.e., if one pictures himself as being
at the lowest point of the cost surface (x = 2
in Fig. 2-I), he may notice that the surface is
required to have certain special properties
there. He may then use these special prop-
erties to locate the lowest point on any such
surface. This intuitive idea is made rigorous in
par. 2-2.

The second method of solving optimization
problems is more direct in nature and is
appealing from an engineering point of view.
The designer initially chooses a design param-

2-2

fix)

Figure 2-1. fix)=(x - 2)*

eter which is admissible, say x‘®?. This choice
of design parameter will probably not put him
at the lowest point on the cost surface.
Rather than discarding this nonoptimal point
and picking another trial point at random he
might attempt to find a second point x{)
which is closer to the lowest point of the cost
surface. The designer's view of the cost
surface is limited to only a small area due to
the local nature of mathematical tests which
he may perform. Using only this local
information, he chooses a strategy which
insures that he makes a move to a new point
x®) which is lower than x©). The direct
methods presented in pars. 2-3 to 2-7 arejust
a mathematical implementation of these
elementary ideas.

2-2 NECESSARY CONDITIONS FOR EX-
TREMA

As described in par. 2-1, the approach
taken in the indirect method is to assume f(x)
has a minimum at x and then derive condi-
tions which f(x)} must satisfy there. These
conditions may then be used to find the
minimum point of any real valued function
fx). They are valuable in giving the designer
an insight into the minimization portion of an
optimal design problem, even when he is using
direct computational methods to solve the
problem. Before these ideas may be devel-
oped, several definitions are required.



Definition 2-1: A real valued function f{x)
defined on a subset D of R” has an absolute
minimum at x inD if

FG) <f(x) -

for all x in D. The function g(x) has an
absolute maximum at x if — g(x) has an
absolute minimum there. The minimum is
called strict if only strict inequalities hold in
Eq. 2-1 forx #X.

Note that f(x) can have a strict absolute
minimum at only one point in D whereas it
could have an absolute minimum at several
distinct points in D provided it has the same
value at all these points.

Definition 2-2: A function f(x) defined on
a subset D of R" has a relative minimum
(maximum) at x if there exists an ¥ > 0 so
that f{x) has an absolute minimum (maxi-
mum) in a subset of D whose points satisfy

| x; —J_Ci l<ei=1,..,n

Verbally, this definition says that f(x) has a
relative minimum at x if it has an absolute
minimum in a sufficiently small neighborhood
of x. It is clear that if f{x) has an absolute
minimum at x, then it also has a relative
minimum there. The converse is not neces-
sarily true.

Example 2-2: Locate all relative and abso-
lute maxima and minima of f{x) on 0 < x <
3, where f(x) is given graphically in Fig. 2-2.

The function f(x) has a strict absolute
maximum at x = 1, absolute minima (not
strict) at x = O and 2, relative maxima atx = 1
and 3, and relative minima atx = O and 2.

In Definitions 2-1 and 2-2 no continuity or
differentiability requirements were placed on
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fix)

Figure 2-2. A Cost Function

f(x). Without making some assumptions asto
the regularity of f(x) it is difficult to verify
the required inequalities. Consider the case of
a function f(x) of the real variable x which
has two continuous derivatives. The Taylor
formula is

fE+h)=f(x) +f h
+31—f('§ +0h)h? (2-2)

where 0< 8 < 1. Since f"'(x + Oh) is bounded
for h in a closed bounded set, it is clear that if
f'(x) # 0 then for small enough h the linear
term in i dominates the squared term so that
fx + 1) may be made both larger and smaller
than f(x) through choice of the appropriate
sign of h. Therefore, in order for f(x) to have
a relative minimum or maximum at X it is
necessary that f'(x) =0. It follows directly
from Eq. 2-2 that if f'(X) = 0, then f"(X) > 0
(< 0) is a sufficient condition for f(x) to have
a relative minimum (maximum) at X.

In case x is in R", results analogous to
those just obtained are given in Theorem 2-1.

Theorem 2-1: Necessary Condition: Let
f(x) be defined on a subset D of R” and have
a continuous derivative in a neighborhood of
a point X which is in the interior of D. If f(x)
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has a relative minimum at x then
Vix)=0. (2-3)

Sufficient Condition: Let f{x) have two con-
tinuous derivatives in a neighborhood of X
and let Eq. 2-3 hold. Then if the matrix

9%f

ox;, ax/.

Vifx) = (x) 24

is positive definite, f(x) has a relative mini-
mum at X.

For convenience in later discussions, Defi-
nition 2-3 is made.

Definition 2-3: A point at which Eq. 2-3
holds is called a stationary point of f(x).

It is imperative that the reader be aware of
the hypothesis of Theorem 2-1 which requires
X to be in the interior of the region D. The
theorem does not apply if X is on the
boundary of D. Example 2-2 illustrates this
requirement graphically. Points x = 0 and x =
3 of Fig. 2-2 yield a relative minimum and a
relative maximum, respectively, but neither
point is stationary (i.e., neither satisfies Eq.
2-3). The same example also illustrates the
need for verification of the differentiability
properties of f(x). Even though x = 1 yields
an absolute maximum of f{x) and is in the
interior of D ,it is not a stationary point since
f(x) does not have a continuous derivative
there. This example illustrates the need to
faithfully verify all the hypotheses before
Theorem 2-1 is employed.

In order to verify the sufficiency condition
of Theorem 2-1, one must have a verifiable
test for positive definiteness of a matrix.
Probably the most useful test is the following
(Ref. 2, page 103): A symmetric matrix
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A= (ai].) nxn 15 positive definite if and
only if the determinate of each of the
matrices A, , formed from the first m rows
and first m columns of A, is positive, m =
1,..,n

Example 2-3: Obtain explicit necessary and
sufficient conditions for flx,,x,) to be a
minimum and a maximum at x, where f{(x,,

X2) has two continuous derivatives in D and x
is an interior point of D,

As necessary conditions for either a mini-
mum or a maximum, Eq. 2-3 demands

fe ) =f (D=0,

A sufficient condition for X to be a
minimum point for f(x) is that in addition to
the above equations, the matrices

A4, :fnxl(f) and
Az = fxlxl(@ fxlxz()?)

fx IX2(§) fx 2x2(';)
have positive determinates, i.e.,
fe, 5, > 0andf, , f,

— [fXIXZ(x)]Z > 0

The function f(x) has a relative maximum
at X if the functiong(x) = — f(x) has a relative
minimum there. Therefore, in addition to
— e, ()=~ fx2()?) = 0 sufficient conditions
for g(x) to have a relative minimum at x are

8 x (> Oandg, . () &, x)

_ [‘gx1x2 ()7)]2 > (.

For a relative maximum of f(x) at x then



sufficient conditions are

fox, G<0andf, O @

1

-l @1*>0
1X 2

Thus far in this paragraph only properties
of f(x) precisely at the minimum point have
been investigated. If the designer viewed the
graph of f(x) versus x to be a surface, then
Theorem 2-1 tells him what the surface will
look like when he finds its lowest point.
Theorem 2-1, however, does not tell him that
a lowest point exists. In order to solve his
optimization problems, the designer would
like to have tools which allow him to stand
back from the cost surface and learn some-
thing about its global properties. Two theo-
rems are now stated which give him a better
overall view of the optimization problem.

Theorem 2-2: If f(x) is continuous on a
closed and bounded subset D of R" then f(x)
has an absolute minimum in D.

This theorem does not hold, in general, if
any of the hypotheses are deleted. For ex-
ample, consider the function f(x) =x onD =
(x| 0< x < 1). D isnot closed and f{(x) does
not have an absolute minimum in D. If
D={xl0<x< 1} then D is closed and f(x)
has an absolute minimum at x = 0.

Note: The hypotheses of Theorem 2-2 may be
weakened by demanding that f(x) be only
lower semi-continuous rather than continu-
ous. For proof, see Ref. 1, page 58.

Theorem 2-3 depends on the concept of
convexity.

Definition 2-4: A subset D of R” is called a
convex set if whenever x andy are in D, then
the straight line segment x + 6(y — x), 0< 8
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< 1,is also in D. A real valued function f(x)
defined on a convex set D is called a convex
function on D if for any two points y and z in
D

fly+0cz - < fO)+01f(z) —f)],
0<0 <.

That is, f(x) is convex on D if the straight
line segment f(v) + 8[f(z) — f(»)] is above the
graph of f(x) on the line segment y +6(z —y )
in D, 0 < 8 < 1. For a more dectailed
discussion of convex functions, see Appendix
A

Theorem 2-3 gives the designer valuable
information about the global properties of the
cost function. It is proved in detail in Chapter
4

Theorem 2-3: Let f(x) be a convex func-
tion defined on a convex set D inR” . Then a
relative minimum of f(x) on D is also an
absolute minimum of f(x) onD.

This theorem is of obvious value to the
designer. It assures him that if his design
problem satisfies the hypotheses of Theorem
2-3 and if he has found a relative minimum
then he is through; he has also found the
absolute minimum.

Computational methods for finding ex-
trema based on the theorems of this para-
graph generally involve the solution of non-
linear algebraic equations. In particular, Eq.
2-3, which is in general nonlinear, can be
solved by a numerical method to locate all
admissible interior extrema. Methods for solv-
ing such equations are given in Ref. 3,
Chapter 2. It generally has been found,
however, that direct methods for finding
extrema are superior to the solution of Eq.
2-3. For this reason mno computational
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methods based on the indirect method will be
presented here.

It will be the purpose of the remainder of
this chapter to present methods that the
designer may use to locate interior relative
minima. Relative minima on the boundary of
the admissible region will be treated in Chap-
ters 3 and 4.

2-3 ONE-DIMENSIONAL MINIMIZATION

In the direct minimization methods to
follow, a multidimensional minimization
problem will be reduced to asequence of one-
dimensional minimization problems; i.e., the
problem of determining a scalar a so that a
given function g(&) will be a minimum.

In the problem of minimizing f(x) for x in
R", all the methods of solution presented in
this chapter are based on successive improve-
ments in certain directions; i.e., at a point x‘?
one finds a direction, s, in which f(x) de-
creases. The object is now to move along the
vector x(? + as, by adjusting a, a > 0, until
f(x) is as small as possible. The resulting point
is then called xU *17, and the entire process is
repeated. It is clear that the intermediate
problem of determining a so as to minimize
fxD + as) is one-dimensional. This paragraph
will be devoted to presentation of methods
for solving the one-dimensional problem.

2-3.1 QUADRATIC INTERPOLATION

If the function f(x(? + as) of the scalar
variable a — x‘? and the unit vector s are
fixed — were quadratic in a,then the value of
a which minimizes the function could be
found by setting

C%(f[x(i) +as])=0.

2-6

The object here is to treat more general
functions, but it is possible to make a
quadratic approximation to f [x'? + as]
which will hold near the minimum point.
Then, the minimum point of the approximat-
ing function, which may be easily found, is an
approximation of the true minimum point.

The quadratic approximation of £ [x(P +
as] is constructed by passing a quadratic
curve in a through three computed values of
the function. The distance between the three
trial points will be 6 > O, where 6 is initially
chosen to be a small fraction of the expected
range of a. It is known, however, that if the
starting point of the process is quite far from
the minimum point then the minimum point
of the approximating function may not be
near the true minimum point. To prevent
making large, inaccurate steps in this case, a
maximum allowable step size A is chosen
before the process begins. A reasonable choice
of A is 50% of the expected range of a.

The following algorithm implements the
procedure described :

Step 1. Definea® = Oandj = 1.
Step 2. Compute
fi =fIxD Tt — s
fo =fLxD ol g
fo =flxD + ("t +§)s].
Step 3. A quadratic polynominal in a —
ot = 7 is fitted through (— 6, £, ),

©, o), (6, f2). Its minimum is
5(fi = 1) .

2, S, if fi — 2f

T TS

t f, # 0. If this quantity is zero,

then the approximation is a



straight line with minimum atz =
+ a, depending on which of f; and
f, is smaller.

Step 4. Define
doo=min (|z,,1,4)-sgn(z,,)
and
of =l +do

Step 5. If |da| is less than a specified
tolerance, the process is stopped
and o is taken as the minimum
value of a. Otherwise, replace j
withj+ 1 and return to Step 2.

2-3.2 FIBONACCI SEARCH (OR GOLDEN
SECTION SEARCH)

The Fibonacci search technique is a
method based on isolating a relative minimum
in an interval and successively decreasing the
size of the interval. The process thus gives
successively better estimates for the location
of the minimum point. For a proof that the
method converges very rapidly the reader is
referred to Ref. 4, page 236. Here, only the
basic ideas behind the method will be given,
and an iterative algorithm stated.

Starting at a = 0 one might evaluate f[x(?
+ asj at a = 6 and check to see if the
functional value is smaller than at a= 0. If it
is, one might then evaluate the function at a=
26 and compare with the value of a = 6.
Again if a decrease occurs, one moves on to «
= 36, etc. The process will terminate when
XD+ +1)8s] > £ [xD +k8s]. Tt is
then known that (& — 1)6 < a< (k+ 1)
contains the minimum point and a more
accurate result, if required, may be obtained
by reducing 6 and repeating the process from
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a = (k — 1)6. If the initial step 6 was too
small, many steps will have to be made before
the minimum point is located.

In Fibonacci search the same basic proce-
dure is followed except that if, after a given
step, the functional value has decreased, then
the next step size is taken as 1.618 times the
previous step size. In this way if the minimum
point is a long way from a = 0, the Fibonacci
technique will isolate it much more rapidly
than the previous method with constant step
size. Note that there is a penalty, in that the
interval which contains the minimum point
may have length much greater than 26. This is
illustrated in Fig. 2-3.

fx +as)

T T a

7 '
0 5 2618 52325 o« . 9.6666
‘min

Figure 2-3. Function of Single Variable

Once the minimum point is restricted to
some interval, this interval is broken up into
three subintervals by inserting points located
a distance of 0.382 times the length of the
interval from each end. A test is then per-
formed to see which subinterval the minimum
point lies in. For a given subinterval the
partitioning is shown in Fig. 2-4.

0.382 (au— ap)

]

' i
th a "p oy,

Figure 2-4. Interval Partition
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The search process is terminated when the
minimum point is isolated in a sufficiently
small subinterval.

The Fibonacci search method has the prop-
erty of being best in a certain sense among all
search techniques which isolate a in an
interval. A measure of the effectiveness of any
such technique is the ratio of the length of
the largest interval in which a may lie after n
steps to the length of the original interval
which contained a.It is shown in Ref. 4, page
253, that if £ [x'? +as] has a unique relative
minimum as a function of a,then Fibonacci
search minimizes the number of interval
partitions.

The Fibonacci search technique may now
be given in the form of a computational
algorithm:

Step 1. First an upper bound must be
found for a, e, . It is clear that 0 is
a lower bound, og. For a chosen

small step size § in a,letj be the
smallest integer such that

f |x(“ [ 6(1.618)"]5}
k=0
. j-1
> f|x(’) [z 5(1.618)k]s|
k=0
Then upper and lower bounds on o are

Olu—

w DM~

5(1.618)%

k=0

j-2
o, = T 8(1.618)F,
k=0

Step 2. Compute f [x(? +a, 51, where

Q
|

=q, 10.382(e, — )

o, =a, +0.618(c, — a,).

-1 _
Note that &, = = 8(1.618)% so fIx(D +
=0

ozas] is known.

Step 3. Compare f [x(? +a 5] and f [x)
+ o, 5] and go to Step 4, 5, or 6.

Step 4. 1f f [x? +a,s] < [ [xD +0y5],
then o, < of? < @, . By the choice
of o, and «,, the new points of, =
a, and o, = o hav_e o, = o,
Compute now f[x? + ofs]
where &, =, + 0.382 (¢, — ).
Go to Step 7.

Step 5. If f [x? +a 5] > f [x? +a, 5],
then o, < /Y < . Similar to the
procedure in Step 4, put o, = @,
and o = o, SO that o, = o,.
Compute f[x(? + 0o s] where o, =
o, 10.618(a, —ar).

Go to Step 7.

Step 6. 1f f [x? +a 5] = f [xD + 5],
puto, =c, and o, =,
Return to Step 2.

Step 7. If o, — o is suitably small, put
: 1 '
ol = 7(01; + «,) and stop.

Otherwise, delete the primes on o,
o, o, and o, and return to Step
3.

2-4 THE METHOD OF STEEPEST DE-
SCENT (OR GRADIENT)

The simplest and probably the best known
of the direct methods of minimization is the
Method of Steepest Descent (or Gradient).
This method is based on the fact that if the
cost surface is smooth, then its tangent plane
is a good approximation to the surface near
the point of tangency. The philosophy of the



Method of Steepest Descent is apparent in its
title. One wishes to change x‘? by an incre-
ment dx in such a way that f(x), x = xD +
dx, i1s reduced as much as possible for a given
length of increment. The direction of the
increment dx is called the direction of steep-
est descent.

The direction of steepest descent is given
by Theorem 2-4.

Theorem 2-4: Let f(x) be differentiable in
R". The direction of steepest descent at a
point X is

dx=—avfI(X) 2-4)
where a > 0 is a scalar factor.

The proof of Theorem 2-4 illustrates clear-
ly that the direction of steepest ascent is

dx=aVfT(x) (2-5)

for a > 0. The reader should note carefully
that Eqs. 2-4 and 2-5 give only the direction
in the design parameter space R"” which yields
the maximum rate of change of f(x). Since
the factor « is not determined explicitly, the
size of step is not specified.

In order to start the steepest descent
iterative technique, the designer makes the
best estimate of the design parameter avail-
able, x‘®). The gradient Vf[x°?] is then
computed at x‘°) and a new point x! is
determined by

x(1) = x(0) _ g{0) T [,(0)]

where ol®) » 0 is chosen using methods of
par. 23 so that f [x(©) — avfT(x(®)] is a
minimum as a function of a. If vf [x(®)] #
0 then f [x(1] < £[x©)] ,s0x}) istaken
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as a better estimate of the minimum point
and the process is continued until Vf [x{)] =
0 ordx is sufficiently small. This method may
be given in compact form as the steepest
descent algorithm:

Step 1. Make the best engineering estimate
x(9) of the minimum point.

Step 2. Compute Vf [x‘?] and define a
normalized gradient s =

m vr7 [x®] Find a =

o which minimizes f [x{? +as ]
(where i is the number of iterations
completed). If vf [xP] = 0, ter-
minate the process and x(? is a
relative minimum point.

Step 3. Put x(+1) = x( _ D¢ 1f | D) |
and |7 f [x4*1)] || are less than
predetermined limits, terminate
the process and let x{*1) be the
approximation to the minimum
point. Otherwise return to Step 2.

It is interesting to note that successive.
directions of steepest descent are orthogonal
to one-another in this algorithm-~i.e.,
Vflx G V] gfT [xD = 0). Tosee this, recall
that of? is chosen so that f[x(? —as] isa
minimum in a. The necessary condition of
Theorem 2-1 then requires

=—af=_ 1 zn: af [x(i+l)]
9o oA 1= ox;
i [x(i)] = ___.______1 -
ax; Il vfT x|
VAT D] 9T [xD)
which was to be shown.
In the case where x =[i;] ,Fig. 2-5is a

view of the design variable space. The closed

2-9
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Figure 2-5. Descent Steps
curves in this figure are lines of constant f(x).

A relatively general convergence theorem
pertaining to this algorithm will now be
stated. The proof of this theorem may be
found in Ref. 5, page 80.

Theorem 2-5: Let f(x) be a continuous
function defined on R” and let x(*) be any
point such that the closed set

s={x1 f0 < £1x1]
is bounded, and f(x) is twice continuously

differentiable on S. Let the matrix of second
derivatives of f(x),

2
. {a f(x)}
ox ,.axj

satisfy the condition

\yTHy | < MyTy

for some M, every y in R" ,and every xinS.
Then for the sequence [x(?] generated by
the steepest descent algorithm:

(1) A subsequence xm) converges to a
point x in § for which VA(x) = 0.

o r [x(i’")l decreases monotonically to

fG).

\xl
1]
J Xw'

(3) If x is the only point in S for which
V£(x) = 0, then x'? converges to x.

Several things which Theorem 2-5 does not
say are worthy of note. First, the theorem
does not guarantee that the sequence of
points x? generated by the Method of
Steepest Descent will converge. Further, un-
less the assumption of (3) holds, the sequence
need not converge to an absolute minimum; it
may converge to a relative minimum.

The choice of the initial estimate x(©? can
have a great deal to do with the limit point of
the algorithm if it does converge. If it is not
known beforechand that a unique relative
minimum exists, it is general practice to start
the iterative process at several initial esti-
mates. If the sequence x(? comverges to the
same point ¥ cach time, then one is led to
believe that he has indeed found an absolute
minimum. Logic such as this can cause sleep-
less nights, however, particularly if a decision
involving considerable resources and perhaps
even one's job depends on the outcome. For
this reason, the importance of at least making
a serious attempt to apply theorems such as
those of par. 2-2 cannot be overemphasized.
Theorem 2-3, for example, if properly
applied, may prevent many anxious moments.

In spite of the simplicity of the Method of
Steepest Descent, it has several severe restric-
tions which are discussed in Ref. 5, page 159.
These are:

1. Even though convergence may be
guaranteed by Theorem 2-5, an infinite num-
ber of iterations may be required for the
minimization of even a positive definite qua-
dratic form.

2. Each iteration is calculated indepen-
dently of the others so that no information is



stored which might be used to accelerate
convergence.

3. The rate of convergence depends strong-
ly on properties of the cost function. If the
ratio of the largest and smallest eigenvalues of
the matrix of second derivatives is large, the
steepest descent algorithm generates short
zig-zagging moves. Convergence is, therefore,
very slow.

For an extensive treatment of modifica-
tions of the steepest descent method, which
prevents certain of these difficulties, see Ref.
4, Chapter 7. Several methods, presented in
the next three paragraphs, do not suffer so
severely from the problems just described.

2.5 A GENERALIZED NEWTON METHOD

In the Steepest Descent Method of par. 2-4,
only first-order derivatives that determine the
tangent plane of the cost surface are used to
represent the behavior of this surface. One
would expect that if second derivatives of the
cost function were available, then a quadratic
function could be constructed as an approxi-
mation to the surface. The quadratic approxi-
mation should allow for much better approxi-
mation of the minimum point of the cost
function.

The idea of this method is to first use a
second-degree Taylor formula as an approxi-
mation to f(x). If f(x) is convex, or just con-
vex near a minimum point then the minimum
point of the quadratic should be near the
minimum point of f(x). The minimum point
of the quadratic approximation is then deter-
mined analytically and is taken as a good
approximation of the minimum point of f(x).

In order to utilize Taylor's formula in-
cluding second degree terms, the following
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matrix is required

H(x)=V2f(x) = l:azf(x)]
nxn

0x ,.ax].

Note that it is implicitly assumed here that
f(x) has two derivatives. By Taylor's formula,

FIxO + Ax] = f[xO] + Uf[x(O]Ax
+%AxTH[x(0)]Ax (2-6)

where Ax is a change in x(®). In case f(x) is
locally convex — convex in a neighborhood of
x(®) _ Theorem A-3 shows that H [x(®] is
positive semi-definite. If, in addition,
H [x(O] is positive definite, then it has an
inverse. Further, f [x{®) + Ax] in Eq. 2-6 is
convex in Ax so Theorem 2-3 insures the
existence of a unique minimum point of the
quadratic function in Eq. 2-6. By Theorem
2-1, this unique minimum point is determined
by

T xO1 +H[xOD] Ax=0
or
Ax = _H ' [x(O7] 9T [xO1, (27

and the new estimate of the minimum point is
XD =x(0) Ay,

Since Eq. 2-6 isjust an approximation, x(1?
will probably not be the precise minimum
point of f(x). Realizing that evaluation of
H(x) requires computation of n (n + 1)/2
second derivatives of f(x), one might be
tempted to improve the estimate for the
minimum point before recalculating all these
derivatives.

An easy way of improving the estimate of
the minimum point is to change the length of

2-11
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the step Ax without altering its direction. The
scalar a ~ 1will be determined by methods of
par. 2-3 so as to minimize f [x©® +aAx].

This procedure may now be put down in
the form of a computational algorithm called
Generalized Newton Method:

Step 1. Make an engincering estimate x (%
of the minimum point of f(x).

Step 2. Compute
XD =@ _ oD g0 gfT [xD7] |

where a = of? is chosen which
minimizes

f{x“) —af = [xD] gfT [x?]

as a function of a. Here, the index
i is the number of iterations com-
pleted.

Step 3. If IV [x®P 1 and || x@+1) — x|
are sufficiently small, terminate
the process and take X * 1) asthe
minimum point of f(x). Otherwise,
return to Step 2.

The Generalized Newton Method presented
in this paragraph has been called the best for
minimizing convex cost functions when
second derivatives are available (see Ref. 5,
page 162). Even in the case in which the cost

function is nonconvex, if the starting point
x(® is near enough to a relative minimum

point so that the cost function is convex at
x(®) then good comvergence may still be
expected.

In spite of the advantages of this method, it
still has several shcrtcomings.

1. Even if f(x) is convex, an inverse of
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H(x) may not exist unless H(x) is
strictly positive definite.

2. In nonconvex problems an iteration
does not necessarily decrease f[x(?]
when the current iterate x'” is not near
the minimum point.

3. For many engineering problems, H(x)
will be extremely messy if not im-
possible to compute efficiently.

Even in nonconvex minimization problems
the Generalized Newton Method may be used
in conjunction with a Steepest Descent Meth-
od to form an extremely effective tool. The
Steepest Descent Method has the property of
making good progress even though only a
poor estimate of the minimum point is
available. As a relative minimum is ap-
proached, however, the rate of convergence of
the Steepest Descent Method decreases. At
this point, however, the cost function should
be convex since a minimum point is nearby.
Therefore, the Generalized Newton Method
may be employed for rapid convergence to
the relative minimum point.

2-6 METHODS OF CONJUGATE DIREC-
TIONS

In par. 2-4 it is pointed out that the
Method of Steepest Descent had rather poor
convergence properties in many problems
because it uses omnly first-order approxi-
mations (involving only first-order deriva-
tives). Further, the Steepest Descent Method
is not a learning process in that it does not
store information from past iterations. The
first deficiency is corrected in par. 2-5 where
a Generalized Newton Method employing
second derivatives is presented. This method,
while having outstanding convergence prop-
erties, requires the computation of n(n+1)/2



second-order derivatives at each iteration (x is
in R"). In most engineering design problems
this is an extremely tedious, if not impossible,
task. Further, the Generalized Newton Meth-
od is not a learning process.

The methods presented in this paragraph
require the computation of only first deriva-
tives. However, by making use of information
obtained from previous derivatives, con-
vergence is speeded as the minimum is ap-
proached. In fact, as one of the methods
progresses, it develops an approximation to
the matrix of second derivatives. In this
respect the methods here have the desirable
features of both the Method of Steepest
Descent and the Generalized Newton Method.

All Methods of Conjugate Directions are
based on the philosophy “If a method works
well in minimizing all positive definite qua-
dratic forms, then it ought to work pretty
well on any smooth cost function.”” To be
more specific, Conjugate Gradient Methods
are guaranteed to minimize any positive
definite quadratic form in » iterations (the
design parameter is in R"). Although this
ideal behavior will not carry over to general
cost functions, since a convex cost function
often looks very much like a positive definite
quadratic form, similar behavior could be
expected. Experience has shown that this is
the case.

In order to be more precise, one makes
Definition 2-5.

Definition 2-5: Let A be a symmetric
positive definite # x » matrix and S, i =0,
l,..,n — 1, be nonzero vectors inR". The S
are called conjugate with respect to A if

sl Asi=0,i#j) (2-8)

Since A is positive definite, the conjugate
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vectors S’ are linearly independent. To see
that this is true, form the linear combination

n=1 .
Z aS8'=0,
=0

where the a; are scalars. Multiplying this sum
onthe left by 8/ T 4 yields

n—1 . . . .
a,5'TaS!=a, 51T AST =0

i=0

and since S'TAST # 0, a; = 0. Since j was

arbitrary, ¢, = 0,7 =0, 1,... n — 1,and this is

just the definition of linear independence.

Consider now the problem of minimizing
the convex function

f(x)=BTx +%xTAx 2-9)

where x is in R", B isann x 1 matrix and 4 is
a symmetric, positive definite, » x » matrix.
The central idea of all methods based on
conjugate directions is contained in Theorem
2-6.

Theorem 2-6: Let S°, ... S*~1 be nonzero
vectors in R" which are conjugate with
respect to the positive definite matrix 4.
Choose scalars A = A3, [ =0, ., n — 1,
successively which minimize

flx +As] (2-10)

where f(x) is givenin Eq. 2-9,

, i-1
(D = 5 (0) 4 ,EO A k) gk 2-11)

and x¢©? is any point in R”. Then x‘" is the
absolute minimum point of f(x) over R”.

The two methods that follow are simply

2-13
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based on different ways of generating con-
jugate directions. There are an unlimited
number of ways to generate conjugate direc-
tions. Several ways are discussed in Ref. 6.

2-6.1 THE CONJUGATE GRADIENT
METHOD

Given any set of » linearly independent
vectors and a positive definite n x 71 matrix A
a set of conjugate directions with respect to A
can be generated by a Gram-Schmidt ortho-
gonalization technique. Let v°, .., »?~1
be linearly independent vectors and define S°
=7 Now put

S =l 4y, 80,
For A-conjugacy, it is required that
59T 451 =0 =87 A (" +a;45°)
and

w7850
0y = ———
T 50T 40
Assuming S* , ..., ¥ are A-conjugate, put

+1 = pk+1 0
S =kt b SOty S

For A-conjugacy it is required that

ST g8 =0=~*1T48 +o,,, 8" 45

where the second equality holds by S-con-
jugacy, so

__l)k+ITASr _
Yy, T o =Lk

S TAS

By induction, the resulting directions are
A-conjugate and

2-14

1T
Sk+1 =vk+1 B § vk+ AST
r=0 SrTA Sr

Many sets of vectors v; could be chosen to
generate conjugate directions. A natural
choice, however, is the set of gradient vectors
of f(x), g = VT (1)), where x(? are defined
in Theorem 2-6. Define

S0 = _ gO
kg1l g0
Sl =_gh*l 4+ 3 grAs — S’ (212
i=0 St 4 5t
Alternatively ,
koghriTasi
Fri=—sriey 20 g (213
i=0 Si' 4 8¢
1
Sincef(x)='£xTAx +BTx,
& =VIT[x(h)] = gxk) 4+ g
or from the proof of Theorem 2-6,
) k-1 1
g, =gl +4| £ ADSH]. (2-14)
g=i+1

Now,

ngSi=gi+1TSi+SiTA[ ) )\(Q)SQ]
R=j+1
-

=0,i< k
due to A-conjugacy of the S7 and

(2-15)

Vilx*+D 8% =0, k=0,...,n — 1. (2-16)

From Eqs. 2-13 and 2-14

O | 7
gt s E_Aisz-\

Ti= T . .
§e=g j=0 S'A 8§/

=0,i< k.



Thus, the g%, i = 0, 1. ..., n — 1 are lincarly
independent and the S% i=0,1, .., n — 1 are
A-conjugate.

The Conjugate Direction Method of Theo-
rem 2-6 may now be applied using the
conjugate gradients S*. The result is called the
Conjugate Gradient Method. In order to apply
this method to nonquadratic problems, it is
first necessary to eliminate explicit depen-
dence of the algorithm on the form of f(x).

By definition,

gl =Ax*l +p=Ax/+ADS/] +B

or

gtl=g/ +A DAY (2-18)

By Eq. 2-16
g1 T si=0=g/Tsi+AD 5T 4 87,
Thus,

gi T S/

A0 = -
siTa s/

Substituting for S’ from Eq. 2-12 and using
Eq. 2-15, this is

. iT si
A =2 = (2-19)
ST 4 s

From Egs. 2-18 and 2-19
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gk+1TA Si ) gk+1T gt —gh
sT 45t giTgi

By Eq. 2-17, for i < k, the right side of the
above equation is zcro. Fori =k,

gk”TA Sk gk+1Tgk+l

SkT 4 5% g*T gk

Substituting this result into Eq. 2-12 yields

T
gk+1 gk+1
T
gk’ gk

Sk+1 = k+1 +

—g S¥. (220

Eq. 2-20 now givesan algorithm for determin-
ing the conjugatc dircctions, cven without
knowledge of the matrix 4 .

For a gencral function f(x),
g = vfTx]

and the following algorithm for finding the
unconstraincd minimum of f(x) is called the
Conjugate Gradient Method:

Step 1. Make an cngincering estimate x(©)
of thc minimum point and com-
pute

§° == 9fT (")

Step 2. Fori=0,1, ..., find a =at? which
minimizes f [x? +«S7].

Step 3. Computc
1) = 5 () 4 D) gi
Sl = _ gfT [x(i+1)] 1 gigi
where

gi = VfxE DY gfT x G+ D)
VA D)V fT [(x(D)

2-15
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Step 4. Terminate the process if
17 AP DT | and [IxFD —x@
are sufficiently small. Otherwise,
return to Step 2.

When this algorithm is applied to problems
in which f(x} is not of the form of Eq. 2-9,
convergence will not occur in »n steps.
Fletcher and Reeves recommend that after n
steps the algorithm should be “restarted”, i.e.,
x"*1) should be treated as x(®) in the
algorithm. In a sense, the first few iterations
of the algorithm build up information about
the curvature of the cost surface. After »n
iterations, this information is discarded and a
new estimate of curvature is built up during
the next » iterations. This method then does
not accumulate information about curvature
of the cost surface over the entire iterative
process.

2-6.2 THE METHOD OF FLETCHER AND
POWELL

A second method based on a different set
of conjugate directions was suggested by
Davidon (Ref. 8) and modified by Fletcher
and Powell (Ref. 9). This method is reported
to be one of the most powerful known
methods for general functions f(x), (Ref. 10).
A major reason for the success of this method
is its capability to accumulate information
about the curvature of the cost surface during
the entire iterative process, even though only
first order derivatives of the cost function
need to be computed.

The directions (¥, generated by the al-
gorithm that follows, are conjugate if /(x) is
of the form of Eq. 2-9. This proof is given in
Refs. 7 and 9. In Ref. 6 it is shown that the
method of Fletcher and Powell fits naturally
into a large class of conjugate direction
methods. The derivation is tedious and lends
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little insight into use of the method. For a
direct proof of convergence, etc., the reader is
referred to Ref. 7.

The computational algorithm is:

Step 1. Make an engineering estimate x¢©’
of the minimum point and choose
a symmetric positive definite
matrix H(®),

Step 2. Fori=0,..., compute

SO = _ g gl [xDy,

Step 3. Compute a = o/ which minimizes
flx sy,

Step 4. Compute
o) = gD g
x(*1) = x() 4 g (D)
HOG*) = () 4 4D 4 gD
where

Y = VFT [x (D] 9T [xD]

o - g gT
AT = o1 ,®

@ HD @y, OT g
B = _

yOT g 4, (0)

Step 5. If | V/[x@ D] || and [(x*1) —
x| are sufficiently small, termi-
nate the process. Otherwise return
to Step 2.

Fletcher and Powell (Ref. 9) prove that this
algorithm has the following properties:



1. The matrix H? is positive definite for
all i This implies the method will
always converge to a stationary point
since

d . ;
AL R I

=~ VAOTHO 7T [xD] < 0

provided Vf[x("1 # 0. This means that
fIx?] may be decreased by choosing a
> 0if flx] # 0.

2. When this method is applied to the
positive definite quadratic from Eq. 2-9,
HW convergesto A™ .

This method might be called a learning
process in that only first derivatives are ever
computed, but as the algorithm progresses an
approximation of the matrix of second deriva-
tives is generated. Many experienced re-
searchers in the area of optimization methods
laud this method as one of the best available.

26.3 A CONJUGATE DIRECTION METH-
OD WITHOUT DERIVATIVES

Occasionally in applications, one is faced
with a problem in which computation of
derivatives of the cost function is impossible
or at least prohibitive from a computational
point of view. There are many techniques for
solving this sort of problem given in Ref. 4.
An efficient technique, not presented in
common texts, was developed by Powell (Ref.
11) using conjugate directions.

A computational algorithm is presented
here without proof. For a proof that the
algorithm generates conjugate directions the
reader is referred to Ref. 11. The computa-
tional algorithm is:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
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Make an engineering estimate of
the minimum point x0) of f(x).
Choose vectors 8/, j = 1,..., n, in
the coordinate directions of R” .

Finda=¢o, k=1,..,
minimize f{x®-1) +agsk ]

n, which

where
0 = x(®
yk :yk'l +aksk, k = 1,..., n,

and i is the number of iterations
which have been completed. Note
that in the onc dimensional mini-
mization for of, it is possible for
of < .

Find the integer i, 1 < m < n for
which

O™ - fom)
is the largest and define
A=fom Yy - fO™).

Define f, = f(¥°), f» = fO"), and
£3=f2" _y°).

Hf;=f or
(fi =2f2 +f3)x{f; — f, — A)?

A
>—2'(fl - fa)z,
put

XD = yn

Terminate the process if [[x(/*1)
— xD]| is sufficiently small. Other-
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wise return to Step 2 with the
same setof s/, j =1, .., n.

Step 6. If neither of the inequalities of
Step 5 hold, defines =" - 3% and
find a = & which minimizes

fO" t+as).

Put

D =" +as.

Terminate the process if [[x¢*1
— x| is sufficiently small. Other-
wise return to Step 2 with the new
set of vectors =l ..., x™-1 gm*+1

., 8"

, S
For a discussion of use of the
algorithm, see Ref. 11.

2-7 COMPARISON OF THE VARIOUS
METHODS

During the development of the methods
presented in this chapter, theoretical advan-
tages and disadvantages have been pointed
out. As a concrete test of these methods,
three functions will be minimized. Two of the
functions to be treated are terribly behaved
and pose a meaningful test to any general
minimization technique. These functions re-
semble a very deep valley at whose bottom
the curvature in two orthogonal directions is
radically different. The third function is
quadratic and poses no serious obstacle to any
reasonable method. More specifically, these
functions are

fi(xy, x2) =1000x; — x7)?
(2-21)
+(1-x,)?

2-18

Fa(xy, x,, x5, x4) = (x; +10x,)2

+ S - x,)?
(2-22)
+(x2 - 2x3)4
+100x, — x4)°
and
f3(x,, mm x3)=x] +2x; + 2
(2-23)

+ 2NN +

The reader should verify that each of these
functions has a strict absolute minimum
point. These points are (1,1), (0,0,0,0), and
(0,0,0), respectively. Each iterative method
will be started at points (— 1,1), (1,1,1,1),
and (1,1,1) for Eqs. 2-21, 2-22, and 2-23,
respectively. These functions will all be mini-
mized by each of the methods of pars. 2-4
through 2-6. The stopping criterion will be
that each component of the independent
variable must be within 10~ 2 of the known
minimum point.

Results will be presented in tabular form so
that a comparison of the behavior of each of
the methods may be made. For the sake of
uniformity, each table will include the itera-
tion number i, the iterate x? =[x, .,
x, P17, and the value of the cost function.

2-7.1 METHOD OF STEEPEST DESCENT

2-7.1.1 COST FUNCTION: f;(x) = 100(x,
7xf)2 +(1 fxl)z.

Exact solution: (1,1), f,(1,1) =0



TABLE 241

STEEPEST DESCENT METHOD —
ITERATIVE DATA FOR COST
FUNCTION, {x)

/ Flx xlm x;m
0 404.0 -1.0 -1.0
1 19.97 0.2576 —0.3743
2 0.8654 0.0707 0.00067
3 0.318 0.452 0.1910
4 0.3048 0.448 0.199
5 0.2929 0.472 0.211
6 0.2828 0.4685 0.218
29 0.1752 0.5864 0.3373
30 0.1728 0.5846 0.3403
73 0.1081 0.6739 0.4499
74 0.1071 0.6729 0.4517

2-7.1.2 COST FUNCTION: f,(x) = (x,
+10x,)% + 5(x5 — x4)% + (x; — 2x3)* +
10(x1 "x;;)“

Exact solution: (0,0,0,0), />(0) =0

TABLE 2-2

STEEPEST DESCENT METHOD — ITERATIVE
DATA FOR COST FUNCTION £, {x}
(i} fi)

i flx i X3 Xg

122.0 1.0 1.0 1.0 1.0
16.43 0.9055 0.055 1.0 1.0
16.31 0.9019 0.023 0.9958 0.9581
16.03 0.8925 —0.0498 0.969 0.746
15.06 0.886 —0.0756 0.923 0.463
12.25 0.641 —0.063 0.699 -0.156
10 3.00 —1.048 0.0746 —0.1608 —0.9197
2.006 —1.039 0.1522 —0.258 —0.815
1.380 —1.043 0.078 —0.298 -0.752
1.188 —1.033 0.1127 —0.3276 —0.7067
1.047 —1.021 0.090 —0.362 —0.634
15 1.041 -1.015 0.0949 —0.368 —0.619
16 1.040 —-1.012 0.0960 —0.370 —0.61l
38 1.039 —1.008 0.0967 --0.373 -0.603
74 1.039 —-1.008 0.0968 —0.373 —0.6019

oD — O

AER =
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2:7.1.3 COST FUNCTION: f;(x) =x? +2x2
+2x3 +2x,x, +2x,x,

Exact solution: (0,0,0), f3(0) =0.
TABLE 2-3

STEEPEST DESCENT METHOD — ITERATIVE
DATA FOR COST FUNCTION £3{x}

i flx {i)] X3 fi} X2 i) X3 {i)
0 9.0 1.0 1.0 1.0
1 0.0714 0.2857 —0.0715 —0.0715
2 0.01311 0.1632 —0.153 0.0512
3 0.0088 0.1604 —0.114 0.065
4 0.00679 0.1245 —0.062 0.053
5 0.00243 0.078 —0.0625 0.0204
6 0.0018 0.073 —0.0476 0.02727
7 0.00063 0.0218 —0.00305 0.0133
8 0.00006 0.014 -0.00956 0.0035
9 0.00005 0.011 —0.00686 0.00485
10 0.00003 0.004 —0.0036 0.0040

It should be noted that the SteepestDe-
scent Method decreased the cost function
rapidly on the first iteration but in the first
two problems failed to converge to the
minimum point. That is typical behavior for
this method, particularly in problems for
which the cost function has a long sharp
valley. It should be clear that blind use of the
Method of Steepest Descent can yield poor
results.

2-7.2 GENERALIZED NEWTON METHOD

2-7.21 COST FUNCTION: f,(x) = 100(x,
—x1)P+(1 —x,)?

Exact solution: (1,1), ,(1,1)=0

2-19
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TABLE 24

GENERALIZED NEWTON METHOD — ITERATIVE
DATA FOR COST FUNCTION

f] {x)
' £ [x li)] X1 (i} X3 fi)
0 404.0 -10 -10
1 3.981 —0.9950 0.9869
2 3.403 —0.7919 0.5832
3 2.588 —0.5248 0.2241
4 1.549 —0.1832 —0.5105
5 0.953 0.0887 —0.027
6 0.473 0.3642 0.1063
7 0.203 0.5955 0.3347
8 0.053 0.8020 0.6315
9 0.0042 0.9536 0.9049
10 0.0002 0.9900 0.9810
11 2x107¢ 1.0003 1.0007

27.2.2 COST FUNCTION: fo(x) = (x; +
10x,)% + 5(x3 —x4)? *+(x; — 2x3)* +10(x,

_x4)4

Exact solution: (0,0,0,0), f,(0)=0

TABLE 2-5
GENERALIZED NEWTON METHOD — ITERATIVE

DATA FOR COST FUNCTION
f2 x)

P UL R R N N

137.0 1.0 1.0 1.0 20*
2.137 —0.3368 0.0175 0.3396 0.3249
0.0496 —0.0640 0.0250 o 1060 0.1229
0.0025 —0.0591 0.0047 0.0627 0.0617
0.0007 —0.0236 0.0031 0.0263 0.0271
0.00001 —0.0148 0.0014 0.0161 0.0160
1x 107 —0.0070 0.0007 0.0078 0.0079

s wWbh = O

2-20

*Note: The trial starting point (1,1,1,1) was

a singular point for v2f, so an alternate
starting point was chosen and the algorithm

converged.

2-7.2.3 COST FUNCTION: f3(x)=xf +2x§
+ 2x§ +2x,x; T 2x,x,

Exact solution: (0,0,0), f5(0) =0

TABLE 2-6

GENERALIZED NEWTON METHOD —
ITERATIVE DATA FOR COST

FUNCTION 73 {x)
i fa[Xm] Xl(i) XZ(” XS(”
0 9.000 1.0 1.0 1.0
1 2x10° 0.0015 0.0015 0.0015

These results indicate that the Generalized
Newton Method is indeed very powerful.
Even in the second cost function where the
initial estimate caused a singularity in v2f5, a
second starting point yielded good results.
Similar behavior has been noted in the litera-
ture, so one can expect to get good results
with this method. It must be remembered.
however, that this method requires that sec-
ond derivatives of the cost function be com-
puted.

2-7.3 CONJUGATE GRADIENT METHOD

2:7.3.1 COST FUNCTION: f,(x) =
—xp)? (1 -x,)?

100(x,

Exact solution: (1,1), f,(1,1) =0



TABLE 2-7

CONJUGATE GRADIENT METHOD —ITERATIVE
DATA FOR COST FUNCTION

fyix)
i f[Xm1 X3 {i) X3 (i)

0 4040 —-10 -1.0
9649. 0.1143 0.0102
0.0839
1 9649. 0.3258 0.0102
22.19 0.5106 0.2360

2 22.19 0.5005 0.2482
0.5033 0.6307 0.3820

3 0.5033 0.6244 0.3882
0.2226 0.7267 0.5178

4 0.2226 0.7227 0.5212
0.001 637 0,9919 0.9827

8 0.001637 0.9842 0.9868
0.000067 0.000013 0.999754

11 0.000067 0.999884 0.999768

2:7.3.2 COST FUNCTION: f2(x) = (x, +
10x,)% +5(x3 —x,)% +(x; —2x3)* +10(x,

—xa)*
Exact solution: (0,0,0,0), f,(0)=0.

TABLE 2-8

CONJUGATE GRADIENT METHOD — ITERATIVE
DATA FOR COST FUNCTION

f,{x)

’ 2 xN X\(ll Xi(«) PR Y
0 1220 10 10 10 10
292527 09016 00346 09642 1000
292527 08632 0 01787 0 4158 09960
3655 08561 00101 0 3642 0 6573
1 1922 0 8404 0 0563 0 3324 0 4438
1922 08180 0 0860 0 3185 0 4540
12 11 0 7507 0 0685 02651 0 4787
3023 06410 0 0850 02533 0 4104
2 2629 G 3404 00281 02192 02075
G 29 03378 00370 02079 02057
1 G51 03331 Q0319 0 1748 02130
01136 03159 00371 0 1473 0 1698
G 00531 00305 0 0029 00718 00717
0 000751 00293 00031 0 0696 00714
0 000751 00294 00078 00695 00713
0 000558 00297 0 0029 00687 00677
8 0001091 003512 0003519 002338 002503
0000517 0035322 003498 0023112 0023119
0000517 0035318 0 003530 0 073108 0023119
1x10-7 0035305 0003528 0023011 0073115
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2.7.3.3 COST FUNCTION: f3(x)=x? +2x2
+ 22 + 200y x, +2x,x3

Exact solution: (0,0,0), f3(0) =0.

TABLE 29

CONJUGATE GRADIENT METHOD —
ITERATIVE DATA FOR COST
FUNCTION 73({x)

i f3[X(i)] Xl(i) Xz(i) X3(i)
0 9.0 1.0 1.0 1.0
0.1181 0.3829 —0.2340 0.0744
0.0293 0.2571 —0.2285 0.1428
1 0 0 0 0

The numerical results presented here indi-
cate that the Conjugate Gradient Method is
very effective even for the Rosenbrock func-
tion f;(x). The method requires approxi-
mately the same amount of computation per
step as the Steepest Descent Method but
shows spectacularly improved performance.

It should be noted, however, that con-
vergence slows as the minimum point is
approached. In fact, as shown in Table 2-8,
convergence to the required accuracy was not
attained in one case.

2-7.4 FLETCHER-POWELLMETHOD

2-7.4.1 COST FUNCTION: f,(x) = 100(x>
a1 —x)?

Exact solution”: (1,1), f,(1,1) =0.
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TABLE 2-10

FLETCHER-POWELL METHOD —ITERATIVE
DATA FOR COST FUNCTION £ (x)

f, [x(”] fi) fi)

1 X1 Xy
0 404.0 -1.0 -10
1 19.97 0.2570 -0.3746
2 0.7839 0.1146 0.01249
3 0.7570 0.1422 0.005683
4 0.7424 0.1727 0.005740
5 0,5377 0.3378 0.08262
6 0.4013 0.3689 0.1416
7 0.2968 0.4815 0.2151
8 0.2524 0.5616 0.2909
9 0.03621 0.8286 0.6784
10 0.032 16 0.8207 06733
11 0.02568 0.8536 0.7221
12 0.01162 0.9268 0.8511
13 0.00437 09342 0.8733
14 000106 0.9760 0.9504
15 8x107 0.9982 0.9967

2-7.4.2 COST FUNCTION: f,(x) = (x; —
10x2)? + 5(x3 —x4)% + (x5 — 2x3)* + 10(x,

—x)?

Exact solution: (0,0,0,0), f,(0)= 0.

TABLE 2-11

FLETCHER-POWER METHOD —~ITERATIVE DATA
FOR COST FUNCTION 7; (x)

i Pl x, 1 x, x, ¥ %, 11
122.0 1.0 1.0 1.0 1.0
14.4292  0.9017 0.03472 0.9642 1.0

2.3775 0.8630 —0.07820 0.4120 0.9%60
0.6678  0.8430 —0.08740 0.3618 0.4986
0.3353 0.2087 —0.02560 0.3644 0.3305
0.05134  0.1117 0.006686 0.1883 0.1952
0.01059 0.07931 —0.009696 0.1532 0.1526
0.00067 0.02731 -0.0007003 0.06189 0.06276
0.00016 0.02164 —0.002344 0.05417 0.0540%
8.3x 106 0.00267 —0,000035% 0.0191 0.0192
2.1x10®  0.00148 -—0.00a63 0.0172 0.0172
10-7 —0.0057 0.00060 0.00341 0.00342

Boouaunewn—o

—
e

2.7.4.3 COST FUNCTION: f5(x) = x? +2x2
+2x2 + 2x,x, + 22,

Exact solution: (0,0,0), f3(0) = 0.

TABLE 2-12

FLETCHER-POWELL METHOD —
ITERATIVE DATA FOR COST

FUNCTION 73 (x)
i fs [x(i)] Xl(l') sz X3“)
0 9.0 1.0 1.0 1.0
1 0,05319 03830 —0.2340  0.07447
2 0.02857 0.2571 —0.2286 0.1429
3 3xto0? 2x107 —2x107 -—-3x107

2-22

The Fletcher-Powell Method requires slight-
Iy more computation than the Conjugate
Gradient Method. However, its convergence
properties are very good as the minimum
point is approached, in contrast to the be-
havior of the Conjugate Gradient Method.

This method appears to have good prop-
erties in all ranges of the iterative process. It is
more stable than the Generalized Newton
Method in the early stages of computation
and converges more rapidly than the Gradient
and Conjugate Gradient Methods near the
minimum point. In these respects it has the
desirable properties of other methods without
having their undesirable properties.

2-7.5 CONJUGATE DIRECTIONS WITH-
OUT DERIVATIVES

2-7.56.1 COST FUNCTION: f,(x) = 100(x,
—xD?+ (A —x,)?

Exact solution: (1,1), f;(1,1)=0.
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TABLE 2-13 TABLE 2-14 (Continued)

i BT X, 7 X (i)
CONJUGATE DIRECTIONS WITHOUT 3 ! 2 3 Xa
DERIVATIVES METHOD —ITERATIVE DATA
FOR COST FUNCTIONT, (x) 04421 00469 00127 02799 0.4284
2 01415 00469 00127 02799 0.2423
. i (i) (il 01418 00510 00127 02799 0.2423
i i [x™] Xy X2

01210 00510 —0.0015 02799 0.2423
o 4040 10 10 0.0498 0.0510 —0.0015 0.1875 0.2423

1001 0.0049 _1.0000 0.0246 0.0510 -0.0015 0.1875 0.1749

0.9902 0.0049 0.0000 3 0.0022 0.0336 —8812‘: 0.1221 0.1 32;
1 0.9902 0.0261 0.0211 4 0.0020 0638 —0. 0.0794 0.088
0.9485 0.0261 0.0007 5 0.0018 01322 -0.0147 0.0892 0.0940
0.9402 0.0429 0.0174 6 0.0010 ggﬁ?g —88;23 0.0580 0.0603
2 0.7922 0.1287 00016 7 0.0005 R - .00 0.0377 0.0322
07022 0.1815 0.0509 8 00000 0.0078 -0.007 0.0058 0.0050
06172 0.2147 0.0436
3 0.3958 0.4058 0.1440
4 0.2895 0.4785 02422 2-7.5.3 COST FUNCTION: x7 + 2
5 0.2591 0.5308 0.3015 +00 +3 +9
6 0.0770 0.7258 0.5225 ! §
7 0.0282 0.8564 0.7246
8 0.0125 0.8942 0.8033
9 0.0119 0.9116 0.8373 ]
10 0.0116 0.9039 0.8218 Exactsolution: (0,0,0), f3(0) = 0.
11 0.0125 0.9469 0.9065
12 0.0042 1.0363 1.0792
13 0.0002 0.9886 0.9781
14 0.0002 1.0032 1.0079 TABLE 2-15
CONJUGATE DIRECTIONS WITHOUT DERIVATIVES
METHOD ~ITERATIVE DATA FOR
2.75.2 COST FUNCTION: fr(x) = (x, COST FUNCTION r3{x)
+ W - aw + +10(x; —
X4)
(i) (i (i} (i)
. r3[x"] x x X3
Exact solution: (0,0,0,0), f,(0) = 0. ! 2
0 9.0 1.0 1.0 1.0
5.000 —1.0000 1.0000 1.0000
TABLE 2-14 3.000 —1.0000 0.0000 1.0000
1 1.000 —1.0000 0.0000 0.0000
CONJUGATE DIRECTIONS WITHOUT DERIVATIVES 0.000 0.0000 0.0000 0.0000
METHOD —ITERATIVEDATA FOR COST
FUNCTION f; {x)
i R X xg @ 0 The Conjugate Dircctions Without Deriva-
0 1220 10 10 10 10 tives Mcthod is not as cfficicnt as some of the
1091 0.2051 1.0000 1.0000 1.0000 mcthods that requirc computation of deriva-
1845 0-5021 0.1140 1.0000 1.0000 tives. However, thcre arc many problems in
7.667 0.2051 0.1140 0.4819 1.0000 . . i ot : o
1 2371 02051 04140 04819 04284 fvhleh .eomputatlon (?f .dematlves is either
2157 00469 01140 04819 04284 impossible or very diffieult. In these prob-
1.075 0.0469  0.0127 0.4819 0.4284 lems, this method appcars to be effective.
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2-8 AN APPLICATION OF UNCON-
STRAINED OPTIMIZATION TO
STRUCTURAL ANALYSIS

As pointed out ecarlier in this chapter,
optimal design problems are seldom uncon-
strained. There is, however, a large class of
analysis problems which can be solved using
unconstrained optimization methods. In Ap-
pendix B, energy principles which govern
equilibrium, vibration, and stability of struc-
tures are given. The condition for equilibrium
is particularly direct since it requires that, in
problems for which the strain energy is
quadratic, the equilibrinm state, x, minimizes
V of Eq. B-18, Appendix B,

V=oxTKx —xTF. (2-24)

1
2
Even in some problems which are nonlinear
and the total potential energy is not qua-
dratic, the minimum energy principle applies.

In view of the quadratic form of Eq. 2-24,
conjugate direction methods are indicated.
Even for nonquadratic energy expressions,
methods for conjugate directions appear to be
very efficient. For a much more detailed
treatment of this class of equilibrium prob-
lems, see Ref. 12.

A second structural analysis problem for
which unconstrained optimization methods
hold even more promise is the eigenvalue
problem, As shown in Appendix B, vibration
and buckling problems reduce to eigenvalue
problems of the kind

Ky =My . (2-25)

In this problem, the smallest eigenvalue X ,of

the Eq. 2-25 is sought. One method of solving
this problem is to rewrite Eq. 2-25 as

K-'My= . (2-26)

2-24

In this form, an iterative technique such as
the power (or iteration) method (Ref 13,
page 93) may be applied to obtain the largest
ecigenvalue of the matrix K~!M and hence,
the smallest eigenvalue of the original prob-
lem. Even though the power method is
efficient, this approach has the severe dis-
advantage of requiring that K~ ! be com-
puted.

A more promising approach to the above
cigenvalue problem utilizes the Rayleigh
quotient (Ref. 13, page 83), i.e., the smallest
cigenvalue A, of Eq. 2-25 is given by

A = min yTKy
Voy#E0 yTMy

(2-27)

If the vector y is normalized by fixing one of
its elements, the resulting vector denoted ¥,
then Eq. 2-27 reduces to
min yT K~

NS }y—,fﬂ—; . (2-28)

The minimization Eq. 2-28 may now be
solved by any of the methods of the present
chapter. The method of conjugate directions
has been recently applied to solve this class of
problems (Refs. 14, 15). It is interesting to
note that this exact approach to the eigen-
value problem was proposed by the inventor
of conjugate direction methods, M. R.
Hestenes, in 1955 (Ref. 16, page 93j. The
technique was apparently not used in engi-
neering problems, however, until 1966.

Iterative methods of the kind outlined in
this paragraph are particularly appropriate for
iterative optimal design techniques. As dis-
cussed in Chapter 5, the most time consuming
task in iterative design methods is the re-
analysis of the system during each iteration;
i.e, after the design variable is changed
slightly, analysis for stresses, displacements,
and eigenvalues must be done even though it
is expected that these quantities will be very



close to their values before the change in
design variables. By using an iterative tech-
nique such as conjugate directions, the pre-
vious state may be used as an estimate to start

AMCP 706-192

the minimization algorithm. In this way, rapid
convergence to the new state of the system is
attained. This approach has been applied with
good success (Ref. 15).
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CHAPTER 3

LINEAR PROGRAMMING

3-1 INTRODUCTION

In the preceding chapter a function f(x), x
in R", was minimized with no restrictions
placed on the location of the design variable
x. Problems in the real world seldom reduce
to this form. In virtually all engineering design
problems, requirements are placed on the
object being designed, and these requirements
are stated in terms of equations involving the
design variable. More often, these require-
ments may be stated in terms of inequalities
involving the design variable.

Examples of inequality constraints are
abundant in all areas of engineering design.
The following are examples:

1. Optimal structural design

a. Stress must be lessthan orequaltothe
yield strength of the material.

b. Buckling load must be greater than
or equal to applied loads.

c. Deflection of the structure must not
exceed specified limits.

d. Natural frequency must lie within an
allowable range.

2. Optimal circuit design:

a. Voltage must remain within linear
range of components.

b. Powerconsumption must be belogw a
specified level.

c. Capacitance of a proposed capacitor
must be within attainable limits.

3. Acrospace vehicle guidance:

a. Controller thrust must be within the
capability of the thruster.

b. Total fuel consumption for a mission
must be less than or equal to the vehicle’s
storage capacity.

c. Altitude must be greater than or
equal to zero.

This list of typical inequality constraints
could be expanded many-fold. It is clear then
that the inequality constraint must play a
central role in any unified theory of design.

The class of problem considered in this
chapter is very restricted. Only linear func-
tions are to be minimized subject to con-
straints which are linear in the design vari-
ables. In matrix notation this is, minimize

fxy=CTx 3-1)

where C is an n x 1 matrix of constants. The
design variable x is required to satisfy

Ax < B
} (3-2)

x=0

3-1
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where A isanm X n matrix and B isanm x 1
matrix. The inequality, Eq. 3-2, is taken as

. Qoo %; < by i=1,..,n.

M=

J
i.e., when one vector is less than or equal to
another vector, each of the components of
the vectors must satisfy this relation.

Example 3-1: Consider the problem of
minimizing

f)=x, *t2x, (3-3)
subject to the constraints
2x, tx, < 4

>0 (3-4)

The constraints, Eq. 34, are satisfied at all
points in the triangular region of Fig. 3-1. The
lines passing through this region are lines of
constant value of f(x). It is clear that as the
line is translated downward, the value of f(x)
decreases and that the lowest line that still
contains points in the admissible region oc-
curs for x; + 2x, = 0. Since this line
intersects the admissible region only at (0,0),
f{x) takes on an absolute minimum at (0,0).

%1
£ «+ -+
MI\‘Q@\

2y~ 255 2%

Figure 3-1. Graphical Solution of
Example 3-1

¥ -+
"
NS "y
4’"0

2%2 &
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As will be seen in the following paragraph,
this is typical of linear programming prob-
lems.

Before proceeding to the next paragraph, it
is worthwhile to discuss the applicability of
lincar programming. The theory of linear
programming arose out of studies of econom-
ic activities. In economics it is often the case
that behavior of an economic system is
predictable only in a rather crude way, so
frequently a linear relation among variables is
as good a representation as can be expected.

In engineering design, however, it is very
seldom that the behavior of an object or
process can be described by linear expres-
sions. One might be tempted, then, to com-
pletely ignore linear programming. Even
though it is not directly applicable to most
engineering design problems, however, linear
programming is still a very powerful tool
First, even though the computational pro-
cedures of linear programming do not carry
over to the real nonlinear world, many facets
of the behavior of solutions are very similar in
more general programming problems. The
engincer who has mastered linear pro-
gramming will go into the study of the much
more complex nonlinear programming armed
with a powerful tool — intuition. Further, the
solution of many nonlinear problems can be
reduced to the solution of a sequence of
linear programming problems. For a review of
some of these applications of linear pro-
gramming methods see Ref. 1.

3-2 PROPERTIES OF LINEAR PRO-
GRAMS

To formalize the discussion of the previous
paragraph, the following definition is made.

Definition 3-1: The linear programming



problem is the problem of determining that x
in R” which minimizes

BTx ) 3-5)
and which satisfies

Ax = C (3-6)

x>0 (3-7)

where C # Oisanm X 1 matrix, 4 isanm x n
matrix, B is an n X 1 matrix and the
symbolism < (=) as applied to matrices means
that the relation less than or equal to (greater
than or equal to) holds for corresponding
components of the matrices.

It should be pointed out that Eqs. 3-5
through 3-7 do not explicitly cover all linear
optimization problems. For example, it may
be required to maximize a linear objective
function. Further, equality constraints may
be imposed and negative values of the x; may
be allowed. However, all these variations on
the linear programming problem may be put
into the form of the problem previously
considered. An objective function may be
maximized by minimizing its negative, equal-
ity constraints are nothing more than a pair of
inequality constraints (i.e., ¥ = O if and only if
¥ < 0 and —y < 0), and a negative x, may
always be written as the difference between
two new non-negative variables. There is
therefore, no loss of generality in considering
only the problem expressed by Eqgs. 3-5
through 3-7.

Definition 3-2: The constraint set for the
linear programming problem of Def. 3-1 is the
set of points in R” which satisfy Eqs. 3-6 and
3-7.

The constraint set associated with a prob-
lem is just the set of design variables which
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describe an admissible object or process, i.e.,
one which performs the required service but is
not necessarily optimal. In LP the constraint
set is a polyhedron and, according to Def. 24,
this constraint set is convex. Further, accord-
ing to the same definition, the cost function
f(x) for LP is convex. If the constraint set is
bounded and nonempty, it is necessarily also
closed and all the hypotheses of Theorems 2-2
and 2-3 are satisfied. One then concludes that
f(x) has a strict absolute minimum in the
constraint and that is has no other relative
minima.

Further, if f(x) had a minimum in the
interior of the constraint set, the necessary
condition of Theorem 2-1 implies

§£ =c¢.=0,i=1,..,n

0x; !
which contradicts Def. 3-1 of LP. Therefore,
f(x) cannot have a minimum point in the
interior of the constraint set but must take on
its minimum at the boundary. Weyl has
shown, in fact, that the solution must lic on
one of the vertices of the polyhedral con-
straint set (Ref. 2).

In spite of this elementary theory, it is
possible that a linear programming problem
may not have a solution. This may happen for
two reasons. First, the constraint set may be
empty; and second, the constraint set may be
unbounded and the cost function may be
decreased without restriction. In order to
facilitate discussion of these difficulties,
Definition 3-3 is made.

Definition 3-3: If the constraint set of LP
is nonempty (empty), the problem is called
Jeasible (infeasible). If the constraint set is
unbounded and the cost function is not
bounded below, then the problem is called
unbounded.

3-3



AMCP 706-192

The concept of the dual problem that will
be used in constructing solutions of LP’s will
now be discussed. The dual problem will also
play a major role in obtaining results for more
general optimization problems.

Definition 3-4: The linear programming
problem of maximizing

CTy ) (3-8)
for y in R™ satisfying
L LPD
ATy < B (3-9)
y=-o /

where the matrices 4, B, and C are the same
asin LP, and are called the dual of LP.

The results of Theorem 3-1 relating LP and
LPD are proved in Ref. 3, page 41, and Ref.
4, page 118.

Theorem 3-1: Let x and y be in the
constraint sets of LP and LPD, respectively.
Then

1. Ty < BTx. (3-10)

2. CTy = BTx thenxandy  (3-11)
are the solutions of LP and LPD, respectively.

3. If LP (LPD) is unbounded, then LPD
(LP) is infeasible.

4. If LP (LPD) is feasible and LPD (LP) is
infeasible, then LP (LPD) in unbounded.

These results are useful in constructing
solutions of linear programming problems.
They are also used in providing Theorem 3-2
that is central to linear programming theory.

3-4

Theorem 3-2: Let LP and LPD both be
feasible. Then both have solutions x and y,
respectively, and BTX = C7T5.

The proof of Theorem 3-2 is involved and
does mnot yield a method of constructing
solutions. It may be found in Ref. 3, page 44,
or Ref. 4, page 118.

Since the solution of LP must lic on a
vertex of the polyhedral constraint set, it
suffices to check at most a finite number of
points for the minimum. This procedure is
followed in an organized way by beginning at
any vertex of the constraint set. If the cost
function cannot be decreased by moving
along an edge of the polyhedron that inter-
sects this vertex, then this vertex is the
solution. If, however, the cost function de-
creases by moving along some edge, this
policy is followed until a second vertex is
reached and the cost function has been
reduced. Since there are only a finite number
of vertices and it is impossible to return to a
previously occupied vertex, the process must
terminate at the minimum over the constraint
set.

In order to illustrate the argument pre-
sented in the preceding paragraph, consider
Example 3-2.

Example 3-2: By moving along edges of
the constraint set, solve the LP

minimize f(x,, x, )= — 2x1 —x,
subject to
—-x; = —1
— X2 — 1

—2x; — 2, > = 3



X1,Xq 2 0.

Solution: The polyhedral constraint set is
shown in Fig. 3-2.

a1/2,1)

(1,1/2)

rxl

Figure 3-2. Polyhedral Constraint Set

The vector

_ava(xl L Xp) = o

whose direction as shown in Fig. 3-2 is the
direction of steepest descent of f(x). Starting
at (0,0) a unit movement along the x, -axis
yields a change

df = Vf(0,0)dx = —2

and a unit movement along the x, -axis yields
a change

df = V£(0,0)dx = — 1

so both moves yield a decrease in f{x). Choose
the x,-axis and move to the first vertex (1,0).
The only movement possible is in the
+ x, -direction from (1,0). A unit move in this
direction yields

df = Vi( 1,0)dx = — 1

which decreases £. Move in this direction to
the first vertex (1, 1/2).
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The only move admissible is toward (1/2,
1). A unit move in this direction is obtained
from

which causes a change inf,
a =970 s =+ T Yo=Y

Therefore, f/ may not be decreased in moving
from the vertex (1, 1/2) so this point is the
solution of the problem.

The idea of moving from vertex to vertex is
good for visualization but is poor for higher
dimensional problems. The same idea, how-
ever, can be implemented algebraically. In
order to obtain relations which will be re-
quired for solution of LP, define slack vari-
ablesty,..., u,, so that

Ax - C=u> 0. (3-12)

The cost function of Eq. 3-5 will be denoted
by the variable

w=8Tx, (3-13)

The problem LP now takes the form
Ax _C—-u=0

x=z 0

u=0

w = BTx = minimum

The solution of LP*is the same as the solution
of LP.

3-5
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The information contained in Eqs. 3-12
and 3-13 is contained in the following matrix
equation (called the simplex tableau):

a1 @12 - &in =01 [X1 L3

Q31 22 - Gon | =C2f [*2 Uz
| (3-14)
|

2m1 8m2 - 4mn l —Cn| | % Um

________ +—| |- S

by by by | O]|[1 w

L I . J

Eq. 3-14 may be viewed asm + 1 equations
involving the variables xq,..., X,, %1, .., 4,
w. At present Eq. 3-14 may be interpreted as
determining u,, ..., 4, , and w explicitly in
terms of x,, ..., x, . It might be desirable to
determine some other combination of m + 1
of the variables in terms of the remaining ».
Except in singular cases, this is possible.

Assume now that m + 1 of the variables 54,
...» 8, » and w have been determined explicitly
in terms of the remaining » variables 7, ,..., 7
Eq. 3-14 will then take the form

n-

[ ' ' YT
a1 412 ... @p —Cq ry §1
' ' ' ’
azy1 432 .. Azp —Ca ra Sz
=] G-15)
’ ' ' ’
2m1 8mz2 - 8mn —Cm| |In Sn
' ' '
bl b2 bn 6 IJ w

where primes denote coefficients obtained
when the original set of equations is solved
forsy,.... s, ,and w.

The solution of LP will be constructed

3-6

using a method which is based largely on
Theorem 3-3.

Theorem 3-3: 1f in Eq. 3-15 b/ > 0.i=1,
w.n and —¢ 5 0 j = 1,.., m, then the
solution of LP is

r=0,i=1...n
§;=—cp ] l,...m
w =6

It is clear from this theorem that any
method of choosing the variables s; and 7,
which will terminate with non-negative entries
in the last row and column, except perhaps
for 6, will serve as a method of solving LP.
Before developing such a method, several
definitions will be helpful.

Definition 3-5: In Eq. 3-15, the variables
sr,j = 1,..., m, are called basic variables, while
the variables r,, i = 1,..., n are called nonbasic
variables.

Definition 3-6: The set of variables s, ...
, Will be called a basic point. If ¢;
< 0,j=1,.., m,in Eq. 3-15, then the basic
point will be called a basic feasible point.

Sm,rl yoers T

A certain geometric interpretation may
now be given for the nonbasic variables. In
LP' it is clear that the boundary of the
constraint set of LP is obtained by setting
various combinations of the variables x,, i = 1,
.., n and ) j=1,..,m,equal to zero. In the
space R" of the design variable x, a vertex of
the polyhedral constraint set is obtained by
having »n equality constraints among the x,, / =
1, ..., n, enforced. By the discussion, this
occurs when r, =0,i=1,..., n. An edge of this
polyhedron is a line in R” obtained by setting
r.= 0 forn — 1indices i. From Def. 3-6 and



Ey. 3-15, it is clear that a basic feasible point
corresponds to a vertex of the polyhedral set.
This is true since setting the nonbasic vari-
ables of the basic feasible point equalto zero
yields admissible basic variables. Further, two
vertices lie on the same edge of the constraint
set if they have » — 1 of their nonbasic
variables in common.

The process for interchanging the roles of a
basic and a nonbasic variable thus becomes
the central tool for methods based on Theo-
rem 3-3. Suppose it is desired to make $; a
nonbasic variable and ra basic variable. If alf].
# (O then the ithequation from Eq. 3-15,

' ! ' —
ai1r1 +.. +a1.].rj toota,r, —c; =

may be solved forr; to obtain

’
¢ 9y @i
= h - 7 i
ij ij ij
s, 4
i ij+1
+——— T+ (3-16)
a; a;
I
ain
-, ——r
al. "

Using this expression for #; r; may be
eliminated from the left sides of the remain-
ing equationsin Eq. 3-15. For Xk #£ i this yields

r ?
, Qi1 O
Gy — 77 |
aij

’ !
R @1 %k
akj—l —T‘ rl.
if

-1

al 4 ’
kj , aii+1gkj
5+ Qi — u;:,— L2 (3-17)

i
aij
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13 13
ol @,
Cp — a 7y
if
’ ’
ciak]
o K 5y

It is thus clear how the coefficients in Eq.
3-15 change as the roles of a pair of variables
are interchanged. This process may be de-
scribed concisely in the language of Definition
3-7.

Definition 3-7: The entry a;; # 0, preced-
ing Eq. 3-16, is called the pivotr of the
transformation. The transformation itself is
called apivot step.

The effect of the pivot step on the coef-
ficient matrix of Eq. 3-15 may be illustrated
easily by the diagram

1 o
p o« - - =
p p
N V. (3-18)
BT o
B v LA
14 14

The diagram shown by Eq. 3-18 simply relates
that in the coefficient matrix of Eq. 3-15 the
following changes occur. The pivot is replaced
by its inverse. All other elements in the same
row as the pivot are multiplied by the
negative inverse of the pivot. All other ele-
ments in the same column as the pivot are
multiplied by the inverse of the pivot. All
other elements in the matrix are decreased by
the product of the element in their column
and the row of the pivot, the element in their
row and the column of the pivot and the
inverse of the pivot.
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Example 3-3:

Given 21 —4llr Sy

w
(@)

-5 3 2 1 w_

interchange the role of ; and s,.

Solution: The new matrix relation is
2/3 =3 —14/3]] s, sy
1/3 = 2= 1/3|| ra] = 1y

-5/3 13  11/3JL1 w

It is shown in Ref. 3, page 53, that this
pivoting transformation preserves the dual
linear programming problem.

The pivoting transformation is an organized
tool which allows one to interchange basic
and nonbasic variables. It remains only to
obtain an algorithm which uses this tool and
Theorem 3-3 to construct the solution of LP.

3-3 THE SIMPLEX ALGORITHM

As was shown in par. 3-2, the solution of
the linear programming problem may be
reduced to the choice of pivot points. The
algorithm presented here will have two
phases. The first phase will consist of an
algorithm for obtaining a basic feasible point.
The second phase will operate only with basic
feasible points and will successively reduce
the cost function until the hypotheses of
Theorem 3-3 are satisfied.

For convenience in the discussion which
follows, it is assumed that the choice of basic
and nonbasic variables has been made at a

3-8

given stage of the solution process and the
primes of Eq. 3-15 are dropped, i.c.,

@y, ... @1p —c¢1] [r1] 511

= (3-19)
am1 Admpn —Cm 'n Sm
P I I

Primes will now be used to denote the
coefficients that result from a pivot step
applied to Eq. 3-19. These new coefficients
are determined by applying Eq. 3-18.

3-3.1 DETERMINATION OF A BASIC FEA-
SIBLE POINT

If some elements in the right-hand column
of the matrix of Eq. 3-19 (other than 6) are
negative, then the present choice of variables
is not a basic feasible point. Let — ¢, be the
negative entry nearest the bottom of the
column (again excluding 6). Since when r, =
0,7=1,..,n 5 =-c¢ < 0,if there are
admissible points in the constraint set of LP,
then it must be possible to increase s, by
increasing some r from zero; i.e., there must
be some positive . Choosej, so that Bjo >
0. This fixes the column index of the pivot.

To find an admissible row index i,, con-
sider first that after the pivot step

C.
' ‘o

%440

It is clear then that candidates for the pivot

% io must be limited to indices i for which

— o0 (3-20)

a 7o



With this restriction in mind, consider the
values of ¢; after the pivot step with i # i,.

These are

C, a;;
= (3-21)

arg jo

In order to insure — ¢; = O, [ > k, it is

required that
o7,
—t—— 2 0,i> k i#Fi, . (3-22)
L
tolo
If a,, > O this clearly holds. If a; < O,
I o ijo
however, the requirement, Eq. 3-22, may be

rewritten as
C.
C.
S, >k IFi (3-23)
a, a, . 0
ijo 10J0
Further, fori =k,

Cin%ki

> -0 (3-24)

i . o>
sincea ; 0.

Inequalities, Eqs. 3-23 and 3-24, show thal
if  is chosen so that

Gio _min [ ¢ |i >0 (3-25)
Z ., i»k \a,

a..
folo o Jo

’

then —c; > 0,i>kand — ¢, > —¢,. If — ¢,
is still negative, the process may be repeated.
Otherwise choose the next entry above — ¢,

which is negative and repeat the process.

If all the ¢, i = k arc nonzero, only a finite
number of basic points are possible since the
process is monotone (nonrepeating). If there
exists a point with —¢; > 0,7/=1, ..., m, this
process must find it. The degenerate case in
which some ¢, = 0,7 > k is discussed later.
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The process described may be given quite
simply as the iterative Algorithm LP-A:

Step 1. Choose — ¢, as the lowest negative
entry (with the exception of 6) in
the right-hand column of the co-
efficient matrix of Eq. 3-19.

Step 2. Choose any positive element Ui
in the kth row of the matrix of Eq.
3-19.

Step 3. Choosc i, asin Eq. 3-25

Step 4. Perform the pivot step with pivot
al.ojo.

Step 5. If any — ¢, < 0,i= 1.,k choose
that one with largest index i and
return to Step 1.If —¢, > 0,i=1,
.., m, then a basic feasible solution
has been found and the process
may be terminated.

3-3.2 SOLUTION OF LP

In par. 3-3.1 an algorithm is given for
finding a basic feasible point. Once this has
been accomplished, the object is to find a
second algorithm which successively reduces
w.

Since by Eq. 3-19,w =byr; +... b r +
6, it is clear that if b}.0 < 0 for some; =j;
then w may be reduced by increasingr; from
zero. If a pivot step is performed which makes
T, A basic variable then w will be decreased.
The choice of the basic variable Sto which is
to be made nonbasic must be made in sucha
way that the point obtained after the pivot
step is still a basic feasible point, i.e., so that
—¢ > 0,1 =1, ., m However, this is
precisely the restriction which led to the
choice of i, in par. 3-3.1. Therefore, the same
procedure for choosing i, may be employed
here.

3-9
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Since w'=Ww —¢; by Ja; ;. the pivot step
determined here guaranteces w' < w provided
al —¢; > 0,i =1, ., m In this case,
therefore, only a finite number of pivot steps
may be made, and the process must terminate
at the solution of the linear programming
problem. Termination occurs when b/f > 0,7/=
1,..., n. Theorem 3-3 shows that this is the
solution of the linear programming problem.
The degenerate case where some ¢, = 0 will be
discussed par. 3-3.3.

This process is given explicitly in Algorithm
LP-B:

Step 1. Choose any negative entry (except
6) b, in the bottom row of the
coefficient matrix of Eq. 3-19.

Step 2. Choose i according to Eq. 3-25

with k = 1.

Step 3. Perform the pivot step with pivot
oo

Step4. If any b; < 0, j=1,.., n, choose
one b; < 0 and return to Step 1.
If b/. > 0,7 =1,.., n, then the
solution of LP has been found.

3-3.3 THE DEGENERATE CASE

In both pars. 3-3.1 and 3-3.2 the computa-
tional algorithms could have problems if some
¢; = 0. This situation is called degenerate since
when » constraints are made equalities by
putting 1= 0,j=1,..n,0nchass, =c¢; =0
which means that still another constraint is an
equality. The degeneracy arises from the fact
that in LP the #» dimensional design variable x
= (x,...x,) satisfies n +1 linear equalities.

Therefore, the # + 1 equations are not linearly
independent.

3-10

Viewed geometrically, the difficulty occurs
because the path which successive basic points
follow on the polygonal constraint boundary
may form a closed loop. To prevent this
behavior with only a small error in the final
solution an entry, — ¢;, which is zero, is
replaced by an arbitrarily small parameter E >
0. The problem is not degenerate any longer
and cycling cannot occur. Therefore, the
altered problem will proceed toward the
solution.

Example 34: Use the simplex algorithm to
solve the LP

minimize 2x, t 9x,+ x,
subject to
X; +H4x,+2x, > 5
3x; +txo+2xy 2 4
x, >0
x,20
xy > 0.
First, LP' is:

minimize w where

1 42 -5 |x ”
3 12— x2| = | uy
01 0_ X3 w
1
subject to

x;20, i=1,2,3, u].>0, i=1,2



For the first pivot step in algorithm LP-A,
k = 2. Choose j, = 1 sincc a,, = 3 is the
largest element in the sccond row. i, = 2 is
the only choice availablc in Eq. 3-25 and
il ~4-4s0.
a22

The pivot is a,, = 1. This pivot stcp inter-

changes u, and x, ' The result is

11 4 -6 117||x) ",

-3 1 =2 4|lu| = |x,

=25 9 —17 36.1| x; w
1

Note that this basic point is alrcady a basic
feasible point so that the process now trans-
fers to algorithm LP-B. Sincc b'; is most
negative, choosej, = 1. Now,

—CI— :] i =-4;
a1 a21 3>
s0 iy = 1. The pivot is then a;y = — 11. The

result of a pivot step is to interchangc x, and
u, . This results in the basic feasible point

— /11 4/11 —6/11 1| u,]| X,
311 — V11 =411 1 || u,] = | x2
25/11 — 1/11—=37/11 11| x, W

1]

Choose j, = 3.

2 e 11/6, AL 11/4,

@14 Q23

s0 ig = 1. The pivot is g,, = — 6/11 and a

AMCP 706-192

pivot step leads to

~1/6  2/3 —11/6 11/67| | 4y] | xs

1/3 13 23 153 ||w X,

17/6 —7/3 376 29/6_| | % | |w
i -

Putj, =2,

Cy Cy

— =_11/4, ——_ =1,
a2, az,

S0 ig = 2and g,, = — 1/3is the pivot. A pivot
step yields

12 =2 12 520\ [u]] [

1 =3 2 1 |{x]|= [=

/2 7 32 s/2d | x, w
Iy

Since this is a basic feasible point and the
first thrce elements in the third row arc
positive, then the solution is immediate. The
nonbasic variables are zero,

Uy =x, = X5 =0
and the basic variables take on the value

x3=5/2, y, = 1l.and w=5/2.

Therefore, the solution to the original LP is

x, =0
X,=0
x3=5/2.

The minimum value of f(x) attained is 5/2.

3-11
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3-4 MINIMUM WEIGHT TRUSS DESIGN

As will become apparent in subsequent
chapters, most optimal design problems are
nonlinear. Even the problems considered in
this paragraph appear at first glance to be
nonlinear. However, it is shown that the
problem can actually be solved as a linear
program. This will not be the case in general.
The class of problems and their solutions that
are discussed in this paragraph are taken from
an outstanding paper by Dorn, Gomory, and
Greenberg (Ref. 5). Similar results have been
reported more recently (Ref. 6).

The problem treated here is minimum
weight design of plane trusses with constraints
on stress. The initial restrictions on the truss
include only the location of joints in the
truss. The loads to be supported by the truss
are applied at joints. A member with non-
negative cross-sectional areca is allowed to
connect each pair of joints. If there are u
joints, there may be u(u — 1)/2 members in
the truss. In general, then, statically indeter-
minate trusses are allowed.

Let A]., j = 1,.., n, denote the cross-
sectional area of jth member and S; the load
in that member due to the external loads
applied to the truss; Sj > 0 denotes tension. If
m = 2u, then equilibrium of the joints of the
truss is specified by the equations

n

2 S =F, =1, m (3-26)
where F; are components of applied forces at
the joints, and g;; are direction cosines of the
clements of the structure intersecting the jth
joint. All a;; are zero if the jth element does
not intersect the point of application of £, In
order to satisfy three equilibrium equations
for the applied loads (including reactions at
supports), itisassumed therearem™® =m — 3
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linearly independent equations in Eq. 3-26.

If o is the maximum allowable stress (both
tensile and compressive) for the material from
which the truss is constructed, then stress
constraints are

1S, 1< oA, . (3-27)

Further, if p is the weight density of the
structural material, the total weight W of the
truss which is to be minimized is

W=p Z AL

2 A (3-28)

where ¢ is the length of the jth member.

The problem of minimizing W of Eq. 3-28
subject to the constraints of Eqs. 3-26 and
3-27 is not the complete truss design problem.
In addition to the equilibrium conditions of
Eq. 3-26, a set of compatibility conditions
between displacements of the joints must be
satisfied. These compatibility conditions will
be nonlinear in the variables S] and 4 ;- In its
complete formuiation, then, the truss design
problem is not a linear programming problem.
It will be shown, however, that if the com-
patibility conditions are ignored and the
problem described by Eqs. 3-26, 3-27, and
3-28 is solved, its solution satisfies the com-
patibility conditions and is, therefore, the
solution of the truss design problem.

Recalling that compatibility relations are
being ignored, it is required that

IS =0A;, j=1,.. 1. (3-29)

This is true since if S | < oA, for somej, then
4; could be reduced with an accompanying
reduction in W. The constraint, Eq. 3-27, is
therefore replaced by Eq. 3-29. The reader

should note that this argument would not be



valid if compatibility conditions were being

enforced, since a reduction in some 4; may
result in a violation of a constraint not
involving 4 ; explicitly.

Since by Eq. 3-29,4; = -(;I-IS]. |, the optimiza-
tion problem is now to minimize

W=t

Q

subject to Eq. 3-26. In order to treat this
problem as a linear programming problem,
define

S, if S, > 0
St =
j
0, ifS].< 0
0, ifS].> 0
SJ._ = .
—S’., 1fS].< 0
Now,
— ot -
5 =5 _SJ
and
— o+ —
1S, 1=} +5;
Denote
T _ -
X =S}, .8F ST S,
cT =(F, ,..,F.)
_ 1
A =(ayt —a),  ap
and
o
T =_
BT = (@, £, 805 %)

In this notation, the problem is of the form
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LP’, namely, find x to minimize

BTx (3-30)
subject to

Ax- C=0 (3-31)

x =z 0 (3-32)

This linear programming problem may now
be solved by the simplex method. Before the
solution of the linear programming problem
can be taken as the solution of the truss
design problem, however, it must be shown
that it satisfies the compatibility conditions.
It is clear that if the truss specified by the
linear programming problem is statically
determinate, it satisfies the compatibility con-
ditions trivially (i.e., there are no compatibil-
ity conditions). For the analysis here, stat-
ically determinate is taken to mean that the
member forces S; are uniquely determined by
the given loads and the equilibrium conditions
of Eq. 3-26.

As pointed out in Ref. 5, page 32, there
will be m* possibility nonzero components of
x (basic variables) in the solution, correspond-
ing to linearly independent columns of the
matrix 4 ; i.e., only m* of the §; will possibly
be nonzero. According to Eq. 3-27, then, only
m* of the areas may be nonzero. Further,
since the rank of 4 is m*, the member forces
are uniquely determined. The resulting truss
is, therefore, statically determinate and hence
is the solution of the original truss design
problem.

It is pointed out (Ref. 5) that the simplex
method for solving many member truss design
problems is relatively time-consuming. It is
proposed that the method be refined for this
class of problems to obtain a practical method
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of solving engineering design problems. Sever-
al examples are solved in considerable detail
in Ref. 5;the results of one of these problems
will be discussed here.

A bridge truss is to be designed to span two
points, 1 and 13 of Fig. 3-3. Three vertical
levels of joints are allowed with five horizon-
tal sets, a total of 15 points, as shown in Fig.
3-3. In the general case there could be
15(14)/2 = 105 members in the truss. Loads
on the floor of the truss are shown in Fig. 3-3.

™

9 12- 15
_f__z. 5. 8- 11- 14
Ll. 7. 10-
[ T
g+ H+g

Figure 3-3. Admissible Joints for Bridge Truss

In the solution presented in Ref. 5, it is
assumed that the truss is symmetric about the
line of joints 7-8-9. This assumption reduces
the number of variables to 57. Further, due to
the assumed symmetry, there are only 14
independent equilibrium conditions. There-
fore, there will be only 14 members which
can be nonzero in the optimum truss. In the
solution presented in Ref. 5 the problem is
made nondimensional by defining a = #/2 and
B=H/V, where h and 2 are the vertical and
horizontal spacing, respectively, and H and V
are applied loads shown in Fig. 3-3.

The solution presented in Ref. 5, page 45,
for a fixed value of B(8 = 1) shows that there
are three subintervals of values of a on each
of which the truss has a constant geometrical
form. For different values of a within a given
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subinterval, the member sizes are different. A
plot of W vs a and the forms of optimal
trusses are shown in Fig. 3-4.

1 2 ‘3 4

Figure 3-4. Optimum Bridge Trusses

The discussion here only touches on the
highlights of the very complete treatment of
the truss design problem in Ref. 5. The
interested reader is encouraged to study this
outstanding article in detail.

Before leaving the truss design problem, a
point of interest in the present results and in
the results obtained in future chapters may be
noted. In Fig. 3-4 it is clear that at two valucs
of a the form of the optimal truss changes
form drastically. Still, even though the
topology of the structure is not continuous in
a, the weight apparently is a continuous
function of a. The same sort of behavior
occurs in a beam design problem with con-
straints on deflection which is discussed in
par. 7-4. These problems might lead one to
suspect that there is some basic mathematical
structure of the optimal structural design
problem that has not been uncovered.

35 AN APPLICATION OF LINEAR PRO-
GRAMMING TO ANALYSIS

. A major application of linear programming
in engineering design is, oddly enough, in



nonlinear programming. It is seldom that a
realistic engineering design problem can be
formulated as an LP. Realistic problems are
generally nonlinear when considered as a
function of both state and design variables.
Several techniques of solution of nonlinear
programming problems are based on approxi-
mation of the nonlinear problem by a linear
one, at least locally. These methods then
require that the approximating LP be solved.
This subject will be deferred until a discussion
of the general theory of nonlinear pro-
gramming has been given.

A second application of linear pro-
gramming which is of concern to the engineer
is in the solution of linear boundary-value
problems that arise in such fields as con-
tinnum mechanics. It should be emphasized
here that this application is not of an optimal
design nature, but rather falls in the field of
engineering analysis.

One of the important methods of solving
linear boundary-value problems is to approxi-
mate the solution by a linear combination of
known functions. The question arises, “How
should the coefficients be chosen so as to
obtain the ‘best’ approximation to the true
solution?”” “Best” may be defined in many
ways. A relatively new concept of “best” will
be discussed in this paragraph.

The general linear boundary-value problem
may be stated in operator notation as

Llz] =Q(x), xin & (3-33)
Blz} =q(x), xonTl (3-34)
where £ is the domain of the independent
variable xeR" and I' is its boundary. The

dependent variable is a vector function of x,
z(x) in R™ . In the case of ordinary differen-
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tial equations onx, ¢ x ¢ x,

m diz
L[Z] = tE Oa’.(x) ‘F (3-35)

and the boundary operator is
Blz] = Azfx,) + Bz(x,). (3-36)

In the case of partial differential equations,

alalz
Lzl = £ a,(x)
la|l<m

[«3

ax, . ox, "
(3-37)
and the boundary operator is
Blz] = A(x)z(x),xonl . (3-38)
The method to be discussed treats both the
partial and ordinary differential equations in

the same way. Let ¢;(x),/ = 1,..., k satisfy the
homogeneous differential equation

L[¢J.] =0,in . (3-39)
Further, let ¢, (x) be found such hat
Lig,1 = Q(x),in Q. (3-40)

Since the operator L is linear the new
function

k
E = ¢0 +]E=l C]' ¢](x) (3'41)

satisfies the differential Eq. 3-33 regardless of
the value of the constants ¢;. The object is
now to find these constants so that z satisfies
the boundary conditions of Eq.3-34 as closely
as possible.
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Define
1BIZ1 —qll=""1Blz) —q; 1. (3-42)

In this notation, z will be the solution of the
boundary-value problem if and only if

HBlz] —qx)1I=0 (3-43)
forall points x onI'.

The method to be treated here attempts to
minimize the error in Eq. 3-43 at a large

number of points x*, Q = 1,...,L, on T.
Define
v="HBIZGD] — g Il (344)

The object now is to choose the constants ¢
so as to minimize y. To sce that this is a linear
programming problem, note that Eq. 3-44 is
equivalent to

Bz(x)] —q,(x) <7 (3-45)
and

-B,[7(x*)] tq,(:xH<y (3-46)
for all i and (.

Note that Eqs. 3-45 and 3-46 are linear in
the ¢, and y. Since the g may be either
positive or negative, it is necessary to define

new constants c}“ = 0 and ¢ =0 such that

G=¢ —q - (3-47)

Now, the problem of choosing vy, c;, ¢ (all
non-negative) which satisfy Eqs. 3-45 and
3-46 and which minimize v is clearly a LP.
Further, it is just a restatement of the best
approximation criterion of Eq. 3-44.
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Example 3-4: Obtain an approximate solu-
tion of

A 9%z . 9%z Loz L (348)
Z=_ —_— — — = —
axi  oaxi  x, ax,

inQ={(x;,x)lIx; < 1,0<x, <} with
o0z _ _
z+zg-0 onTl —{(xl,x2)| Ix, I =1,

x,=0o0rx, =1} (3-49)

where # is the interior unit normal to I'.

Put
. 3
%o =ZX§

e (3-50)
2

= 2 _
9, 2x1 X2

_g.4 2.2 4
é, --8x1 —24x1 x; + 3x2.

/

Note that these functions satisfy Egqs. 3-39
and 3-40.

The domain $2 and its boundary I' are
shown in Fig. 3-5. Partial derivatives with
respect to the interior normal are shown.

X
2

L
on ax2
" 0Z [
—— z
— 1 L8z
3z _2dz , n 7 lon ax
an dx,; t I 1
X
2%z !
on ox

Figure 3-5. Boundary Condition for
Example 3-4



The procedure is now to form

= -:ng toe t 02(2):3 —x3)

+ oy (8x) —24x2x2 +3x))

and, with the aid of the expressions for 3z/dn
in Fig. 3-5, compute z + 9z/9n at L points
around the boundary I'. At a typical point,
eg., (1, 1/2),

Zz Z .1 + (11/41
— = —+c, _
z ¥ an 16 ! €2

—(285/16) ¢,
At this point it is required that
1/16+ (c] —cy) — (11/4) (), —¢3)
—(285/16) (¢%, —¢c,) @ ¥
and
— 1/16—(0'; —c7) +(11/4) (c"2 —c3)

—(285/16) (¢} —c3) < 7.
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Similar inequalities in the ¢}, ¢;; and ¥ will be
obtained at all other boundary points chosen.
Under the requirements ¢; > 0, ¢;> 0, and
y > 0, the problem of minimizing v is then
solved.

Rabinowitz in Ref. 1, page 141, reports
that an approximate solution obtained by the
above method is

1 = —0.5571, ¢,=0.0764, c, =0.0024,
v =0.0053.

This means that at all the boundary points x*,
1z Y oz/on | < 0.0053. A result called a
maximum principle from the theory of
second-order elliptic partial differential equa-
tions then implies

[z(x) —z(x) | < 0.0053, xinQ2

where z(x) is the true solution of Eqs. 3-48
and 3-49. This powerful result guarantees that
the approximate solution z generated by
linear programming is within 0.0053 of the
true solution throughout £2.
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CHAPTER 4

NONLINEAR PROGRAMMING AND FINITE
DIMENSIONAL OPTIMAL DESIGN

4-1 INTRODUCTION TO THE THEORY OF
NONLINEAR PROGRAMMING (NLP)

As pointed out in the preceding chapter,
inequality constraints play a central role in
engineering design problems. The inequalities
treated in Chapter 3, however, are of a rather
special form, namely, they involve only linear
functions of the variables of the problem. It is
a rare real-world design problem which can be
put into this form. In general, the inequality
constraints as well as the cost or return
function in real-world problems are nonlinear.
For this reason, a more general theory than
that presented in Chapter 3 is needed.

The class of problems considered here is
called nonlinear programming, or math-
ematical programming. A vast amount of
literature has been devoted to this class of
problems in recent years. Several books on
the subject which contain reviews of this
literature are Refs. 1, 2, and 3. In view of this
extensive literature, the purpose of this para-
graph is simply to state the nonlinear pro-
gramming problem and present some key
results needed in the study of methods of
optimal design.

4-1.1 NONLINEAR PROGRAMMING
PROBLEMS

For convenience and clarity in the develop-
ment of methods of solution, the nonlinear
programming problem will be stated in two
forms. The first form is given by Definition
4-1.

Definition 4-1: The first nonlinear pro-
gramming problem NLP, is: find xeR" to

minimize f(x) 1 (4-1)
subject to NLP
gx)< 0 4-2)
£ (x)
where  g(x) = .
g, (x)

Unless otherwise specified, it will be
assumed that f(x) and g(x) are continuously
differentiable. Other than this differen-
tiability requirement, f(x) and g(x) are as
general as required for a particular problem.

A second form of nonlinear programming
problem, which may actually be included in
NLP, is given by Definition 4-2.

Definition 4-2: The second nonlinear pro-
gramming problem NLP', is: find xeR” to

minimize f(x) (4-3)

subject to
g(x) < 0, NLP' (4-4)
(4-5)
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g
where  g(x)= . ,
& (xL
and — -
hy ()
h(x) = .
;hp (x)_

Unless otherwise specified, it will be
assumed that f(x), g(x), and A(x) are con-
tinuously differentiable.

Very much as in the linear programming
problem, the points x which satisfy the
constraints of NLP and NLP' are charac-
terized by Definition 4-3.

Definition 4-3: The sets of points xeR"
that satisfy the constraints NLP and NLP' are
called constraint sets. They are denoted

D={xeR"| g(x)< 0)
for NLP, and

D'= {xeR"|g(x) < Oandh(x)=0}
for NLP".

For convenience, Theorem 2-2, which was
stated previously in Chapter 2, is given here
(Theorem 4-1) as it applies to nonlinear
programming problems.

Theorem 4-1: If f(x) is continuous on D
(D' )and this set is closed and bounded inR",
then NLP (NLP") has a solution which is an
absolute minimum of f(x) inD (D’').

This theorem is one of the most easily
obtained yet most powerful results in opti-
mization theory. It guarantees existence of a

4-2

solution with only very mild assumptions.
This result is a consequence of properties of
R™ . In the infinite dimensional optimization
problems of Chapter 6, the space of variables
lacks these properties so that no analogous

result is available.

Theorem 4-2 provides an easy test for
closedness of the constraint set.

Theorem 4-2: If the functions g(x) and
h(x) are continuous, then the sets D and D’
are closed in R" .

The boundedness hypothesis of Theorem
4-1 may be more difficult to check, par-
ticularly in complex problems. One must
show that there exists a number a such that if
xeDorD’, thenx”x < a.

To see that NLP' can actually be included
in NLP, define

Bivm X)=h(x),i=1,..,p
and
gi+m+p (x) =— hl(x)’ = 1,...,p.

Now, NLP' is equivalent to the NLP:

minimize f(x)
subject to
£(x)< 0,
R &1 (.x )
where  g(x) = .
Em+ 2p(x)

This is true since

&x)< 0, ji=m*1,.,m+2p



isjust
hi(x)< 0, ] = l,..,P

and

k()< 0.j=L..,p
which is equivalent to
h(x) = 0.

It should be clear that problems of maxi-
mizing fA(x) are put into the form NLI,’\ or
NLP' simply by defining f(x) = — f(x).
Further, constraints of the form £(x) > 0are
transformed to the proper form simply by
defining g(x) = —g2(x). These transforma-
tions involve no theoretical or practical diffi-
culty. As will be seen in par. 4-2, even though
the transformation of NLP' into NLP involves
no theoretical difficulty, severe practical diffi-
culties occur. The explicit characterization of
equality constraints in NLP' will be useful
later, when methods of constructing solutions
are discussed.

Comparing nonlinear programming prob-
lems with the unconstrained problems of
Chapter 2, one might conclude that the
nature of the cost function f(x) will deter-
mine the location of the minimum point, with
only a check required to wverify that con-
straints are satisfied. Since the linear pro-
gramming problem is a special case of the
nonlinear programming problem, the results
of Chapter 3 show vividly that this conclusion
is false. In the linear problem, the cost
function plays only a minor role in the
simplex algorithm and most of the computa-
tional effort is expended operating on the
constraint functions.

While results from the linear programming
problem yield valuable insight into the non-
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lincar programming problem, one must be
careful not to generalize too much. To
illustrate some differences between linear and
nonlinear programming, two examples will
now be treated.

Example 4-1 :
Minimize
fO)=(x1 =3)* +(x; —3)?
subject to constraints
—x <0
—x, <0
Xy +x; — 4<0,

The constraint set is the shaded triangular
region in Fig. 4-1.

4,0

(0, 0) 4, 0) *1

Figure 4-1. Graphical Solution of Example 4-1

If the constraints are ignored, f(x) takes on
its minimum at the point (3,3). Observing the
circles, which are plots of constant value
curves of f(x), it is clear that the smallest
value f(x) takes on in the shaded triangle is
7(2,2) = 2. This is, therefore, the solution of
the problem.

It should be noted that even though the
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solution occurred on the boundary of the
constraint set, it did not occur at a corner as
it would have if the problem had been linear.

Example 4-2:
Minimize
) =(x; 12 +(x, — 1)?
subject to the constraints
—x; <0
—x, < 0
x; +tx, —4< 0.

The constraint set is just the same as in the
previous problem. The cost function, how-
ever, has been modified.

If the constraints are ignored, f(x) takes on
its minimum at (1,1). Since this combination
of design variables satisfies the constraints, it
is the solution of Example 4-2. The solution
of this nonlinear programming problem,
therefore, occurs in the interior of the con-
straint set. This behavior contrasts sharply
with that of linear programming problems
where the solution must occur on the bound-
ary of the constraint set.

These examples show conclusively that the
properties of NLP, and hence, also NLP’,
differ considerably from those of LP.

Theoretical results and computational
methods for NLP and NLP’ will also be more
complex than those for the linear pro-
gramming problem. The reason for this is
clear. Strong use was made of linearity of the
functions involved in the linear programming
problem, and this linearity is not present in
the nonlinear programming problem. The
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increased complexity of nonlinear as opposed
to the linear problems is not surprising since
increased complexity generally accompanies
this transition in all mathematical disciplines.

Due to the complexity of NLP and NLP’,
methods of obtaining their solutions are
generally computational in nature. Moreover,
in many meaningful engineering problems,
convergence proofs are not available so the
designer must depend heavily on his engineer-
ing intuition. One must be extremely careful
in applying engineering intuition to certain
aspects of optimization problems, however. In
most problems of engineering analysis, exis-
tence and uniqueness of solutions are taken
for granted since these properties hold for
very general classes of problems such as linear
elasticity, dynamics, circuit theory, and struc-
tural analysis. Existence and uniqueness ques-
tions in optimization problems are, however,
by no means trivial. For instance, before the
designer commits himself to a design based on
an optimum obtained by a computational
algorithm, he should seriously consider the
possibility that this optimum is only relative
and an absolute optimum exists that will give
much better results.

Due to the weakness of intuition in dealing
with optimization problems and the inherent
complexity of these problems, the importance
of theoretical results concerning existence,
uniqueness, and necessary and sufficient con-
ditions cannot be overemphasized. The re-
mainder of this paragraph and par. 4-2 are
devoted to these questions, while pars. 4-3
through 4-5 contain methods for obtaining
solution of NLP and NLP’.

4-1.2 GLOBAL THEORY

In nonlinear programming problems one
often obtains a relative minimum of f(x) in



the constraint sct. The question arises, “Is this
relative minimum an absolute minimum?” In
general problems it is difficult to answer this
question. There is a class of problems, how-
ever, in which this question is easily answered.
This class is described by Definition 4-4.

Definition 4-4: If D (D’)is a convex set
and f(x) is convex on D (D”) then NLP (NLP)
is called a convex programming problem.

Theorem A-1, Appendix A, guarantees that
if g;(x), i=1, .., m, are convex functions,
then the set D is convex. Since the equalities
(Eq. 4-5) in NLP’ define a surface inR” ,it is
clear that D’ is the intersection of that
surface with the set { xeR™|g,(x) < 0,i= 1,
... m) . The surface is convex if and only if it
is a plane, or equivalently, if and only if each
hl.(x) is linear in x. Since by Theorem A-6,
Appendix A, the intersection of two convex
sets is convex, D’ is convex if g(x), i= 1, ..,
m, are convex and hl.(x),j = 1,.., p are linear.
The class of problems NLP* which are convex
is, therefore, quite restricted.

As will be clear from what follows, con-
vexity is a very desirable property. However,
in the real world, many optimization prob-
lems are nonconvex. In spite of this fact, the
study of convex problems is justified. Many
results which hold only in convex problems
have led to constructive methods which are
effective for finding local extrema in noncon-
vex problems. Some of these methods would
probably never have been developed if only
general nonconvex problems had been
treated.

One of the powerful results which follows
due to convexity is given in Theorem 4-3.

Theorem 4-3: A relative minimum in a
convex programming problem is an absolute
minimum.
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41.3 LOCAL THEORY

Without convexity it is difficult to say
much about global properties of the solution
of NLP or NPL‘ Considerable theory is
available, however, which characterizes local
minima. The approach in the local theory is
to suppose that f(x) has a relative minimum at
apoint inD or D’ and then find conditions on
Jf(x), g(x), and A(x) which must hold at this
point. In this way, many points in D and D’
may be eliminated as candidates for a relative
extrema and perhaps relative extrema can
even be located using these conditions. Such
conditions, therefore, are called “necessary”.
In some problems it will be possible to obtain
a set of conditions that, if satisfied at a point,
guarantee that this point yields a relative
extremum. Conditions of this kind, of course,
are called “sufficient”.

As often happens in engineering, the engi-
neer needs a powerful result developed in
mathematics to solve his problem. Proof of
this result, however, may be very complex
and, in fact, contribute very little to the
engineer’s insight into his problems. This
appears to be the case in many phases of
optimization theory, in particular, in the
study of necessary a.id sufficient conditions
in nonlinear programming. In the remainder
of this paragraph results will be Forrowed
from mathematical developments.

Before meaningful results may be given for
NLP and NLP’, the following conditions will
be required of the constraint functions g(x)
and A(x).

Definition 4-5: (First-order constraint
qualification): Let x® be a point in the
constraint set D’ (or D if there are no equality
constraints) and let the functions g(x) and
h(x) be differentiable at x°. Then the first-
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order constraint qualification holds at x° if
for any nonzero yeR" such that Vgl.(x°)y e 0
for each i with g,(x®) = 0 and VA(x®)y =0,
then p is tangent to a differentiable arc
passing from x° into the constraint set.

Geometrically, this definition says that if
the vector y is a direction which, to first
order, appears to point from x° into the
constraint set, then there is a curve with » as
tangent which actually passes from x° into
the constraint set. The conditions Vg,(x°)y a
0 forg(x") = 0 and VA(x®) = O are just first
order perturbations of g;(x) and A(x) which
indicate that a small move in the y-direction
ought to do the right thing to g{x) and
h(x). This is illustrated in Fig. 4-2.

Figure 4-2. First-order Constraint
Qualification

While all constraints do not satisfy the
first-order constraint qualification, the follow-
ing theorem (Ref. 1, page 19)identifies a class
of constraints which do.

Theorem 4-4: If g(x) and A(x) are differ-
entiable at x° in D' and if the gradients
vg(x°), for i with g,.(x") = 0, and Vh].(x")
are linearly independent, j = 1,.. ., p, then
the first-order constraint qualification is satis-
fied.

4-6

In this result, and in fact, in the remainder
of this paragraph, the problem NLP' is de-
scribed. It is clear, however, that puttingp =0
in NLP' yields NLP. One of the principal
results of nonlinear programming may now be
stated. For proof the reader is referred to Ref.
1,page 20.

Theorem 4-5: (Kuhn-Tucker Necessity
Theorem): Let the functions f(x), g(x), and
h(x) be differentiable and let the constraint
functions satisfy the first-order constraint
qualifications at a point X in D' of NLP'". In
order that x be a relative minimum for NLP'
it is necessary that there exist multipliers
veR™ and we RP such that

v;2 0,i=1,...m (4-6)
vg)=0,i=1,...,m (4-7)
and
VL(xyw)=0 (4-8)
where

LGeyw) =fx) +vTgx) +wih(x)  (4-9)
is called the Lagrangian.

In a sense, Theorem 4-5 is an existence
theorem. Tt asserts that if X yields a relative
minimum for NLP', then the multipliers v and
w exist and that Eq. 4-8 is satisfied. Occa-
sionally, one will run across an argument
attempting to justify this theorem which
states that

fx)=f(x) +vTg(x) +wl h(x) = L(x,v,w)

since v is defined by Eq. 4-7 and 4 = 0. It is
then claimed that since x yieclds a relative
minimum for f(x) it must yield a relative



minimum for L(x,»,w), so VL(x,y,w) = 0
must hold. This argument is nof valid. For a
rigorous proof of Theorem 4-5 the reader is
referred to Ref. 1.

Theorem 4-6 states additional conditions
which are required to hold if the functions
appearing in NLP' have two derivatives.

Theorem 4-6: (Second-order Necessary
Conditions): Let f(x), g(x), and A(x) have
two continuous derivatives at a point ¥ inD'.
Further, let the vectors Vgl.()ﬂ, for all i with
g,(x) = 0, and VA(x) be linearly independent.
If x yields a relative minimum for NLP', then
it is necessary that there exist ¥ and w
satisfying Eqs. 4-6, 4-7, and 4-8. Further, for
every yeR" such that Vg,(X)y = 0 when g(X)
=0, and VA(x)y =0, it is necessary that

Yy 92LGy,w)y = 0 (4-10)

For proof of this theorem, see Ref. 1, page
25. Note that the existence of v and w
satisfying Eqs. 4-6, 4-7, and 4-9 is a conse-
quence of Theorem 4-5. Even though this
theorem involves second-order conditions, it
still gives only necessary conditions.

A theorem which gives conditions which, if
satisfied at some point, are sufficient to
guarantee that this point yields a relative
minimum for NLP' will now be stated. For
proof of this theorem, see Ref. 1, page 30.

Theorem 4-7: (Second-order Sufficient
Conditions): Let f(x), g(x), and A(x) be twice
differentiable functions at a point x. If for
xeD' there exist v and w satisfying

vz 0,i=1,..,m

v.g,(x)=0,i=1,..,m

VL(xyw)=0
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and if for every nonzero yeR" such that

veg(x)y =0 forv, > 0, vg,(x)y < O forg,(x)
= Oand v, = 0, and VA(X)y = 0, it is true that

YIVILGrw)y > 0 4-11)

then x yields an isolated relative minimum for
NLP'.

It should be noted that there is a gap
between the sufficient conditions of Theorem
4-7 and the necessary conditions of Theorem
4-6. Strict inequality is required in Eq. 4-11
for a larger set of vectors y that may yield
only equality in Eq. 4-10. It is doubtful that a
single, tractable set of conditions exist that
are both necessary and sufficient for the
general problem NLP'.

There is one class of nonlinear pro-
gramming problems in which conditions may
be given that are both necessary and sufficient
for an absolute extremum. This class is the
convex programming problem.

Theorem 4-8: Let f(x) and g,(x), i= 1, ..,
m, be continuously differentiable and convex,
then necessary and sufficient conditions for X

to be an absolute minimum point of NLP are
that there exists ve R™ such that

gx)< 0
vigi()_c)= 0,i=1,..,m
v,z 0,i=1,.,m

and

VI + 2 v, Vg, =0.

The technical presentation of par. 4-1 ends
with this satisfying result. Several comments
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are, however, appropriate at this point. The
analytic necessary and sufficient conditions of
par. 4-1 could be used to construct solutions
of NLP by solving systems of nonlinear
equations. This is particularly true of the
results of Theorem 4-8. If one reads the
current literature, however, he is led to the
distinct conclusion that iterative methods
based on successive improvements are too
effective to bypass in favor of methods that
require solution of complicated, nonlinear,
algebraic equations.

Even if the results of par. 4-1 are never
used by the designer to construct solutions of
nonlinear programming problems, they are
still very powerful tools. Verification of the
hypotheses of one of the theorems may mean
the difference between going onto the com-
puter with the comforting knowledge that a
unique solution exists as opposed to the
frustrating experience of having computer
print-out which may be meaningless.

4-2 THEORY OF FINITE DIMENSIONAL
OPTIMAL DESIGN

The nonlinear programming problems of
par. 4-1 are quite general and may be applied
to a variety of optimization problems. As is
frequently the case with very general formula-
tions of problems, special features of some
problems within the class being studied are
not exploited. This appears to be the case
when general nonlinear programming theory
is applied to solve optimal design problems.
Interpretation of certain of the variables and
constraints in the problem NLP’, in the
contextof optimal design, yields very effective
computational methods of solution. This
paragraph will be devoted to stating the finite
dimensional optimal design problem, drawing
an analogy with NLP’, and stating necessary
and sufficient conditions that follow directly

4-8

from the theorems stated in the preceding
paragraph.

4-2.1 FINITE DIMENSIONAL OPTIMAL
DESIGN PROBLEMS

The class of problems to be treated in this
paragraph is, in a sense, a special case of the
nonlinear programming problem NLP’. How-
ever, by developing a theory for the new class
of problems which takes advantage of its
special features, a more efficient solution
algorithm may be obtained.

The general optimal design problem must
have several of the features of NLP’. Namely,
it is required to have a cost (return) function
which is to be minimized (maximized) and a
set of constraints that describe the perfor-
mance demanded of the object being de-
signed. It is in the representation of con-
straints that the optimal design problem
differs from NLP’.

In most problems of design in the real-
world the object being designed is required to
behave according to some law of physics. This
behavior is described analytically by a set of
variables called statc variables. Further, there
is a second set of variables that describe the
object itself rather than its behavior. These
variables are called design variables since they
are to be chosen by the designer so that the
object being designed performs its required
function. It generally happens that the laws of
physics that determine the state variables
depend on the design variables so the two sets
of variables are related.

To illustrate the difference between state
and design variables, consider the following

design problems:

1. Find the coefficient of damping in an



automobile shock absorber so that peak ac-
celeration in the passenger compartment due
to road conditions is as small as possible.

The coefficient of damping is the design
variable since it describes the object being
designed, and its magnitude is to be fixed by
the designer. Acceleration on the other hand
is a state variable since it describes the
behavior of the object being designed.
Further, this state variable may be determined
by Newton's laws of motion. Note that the
designer has no direct control over the state
variable. He may effect it only indirectly by
adjusting the design variable. This is typical of
state and design variables.

2. Determine the size of beams to be used
in a structure so that when a given set of loads
are applied stresses are within certain given
limits, the deflection of certain points on the
structure is within given limits, and the
structure is as light in weight as possible.

Beam sizes are the design variables in this
problem since they describe the structure
being designed and they must be chosen by
the designer. Stress and deflection, however,
are state variables that are determined by
equilibrium and force deflection relations.
Again, the designer has no direct control over
stress and deflection. He may effect these
quantities only by varying the size of beams
in the structure.

In most real-world design problems the
state and design variables are clearly identi-
fied. In what follows, the state variable will be
an n-vector, ze R*, and the design variable will
be a k-vector, beR¥. The basic elements of the
optimal design problem are described by
Definition 4-6.

Definition 4-6: The finite dimensional
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optimal design problem (OD) is a problem of
determining beR¥ to

minimize f(z,5 ) Y (4-12)
subject to
41 OD
h(z,b)=0 (4-13)
o(z,b)< O (4-14)
where
Fhl (z,b) “!
h(z,b) = . >
h,(z,b)
L _
6,(20) ]
#(z,b) = . . 4-15)
L¢m (z.b)

and all the functions of the problem are re-
quired to have first-order derivatives. Further,
it is required that the (» *k) vectors

26, 09,
oz’ b (“4-16)

arc lincarly independent for all i with ¢,(z,b)
= 0 and that the matrix

oh

- (4-17)

is nonsingular.

. gh .
The assumption that the matrix gz— is

nonsingular guarantees, by the implicit func-
tion theorem (Ref 4, page 181), that for
given b there is a unique solution of Eq. 4-13
for z. Further, the state variable z, determined
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from Eq. 4-13 as a function of b, is differ-
entiable with respect to b. This fact will be
needed later when constructive methods are
developed.

4-2.2 LOCAL THEORY

Since it is very seldom that the state
equations (Eq. 4-13) are linear in both z and
b, convexity of the constraint set and hence
the problem will be rare. For this reason, no
global results based on convexity will be
discussed. In case Eq. 4-13 is linear, however,
global results may be obtained by applying
the Theorems 4-3 and 4-8.

It is clear that if a new variable xeR" * ¥ is
defined as

x= [;] (4-18)

then the problem OD may be put into the
form NLP’. According to Theorem 4-4, the
first-order constraint qualification will be
satisfied for OD (with xeR” * ¥ as indepen-
dent variable) if the row vectors

[an, on,
— = |i=1., 419
[z ~ ab ; " (*-19)

2 2,
5 (z,b), b (z,b) |,
forj with ¢I.(z,b) =0 (4-20)

are linearly independent. Theorem 4-5 may
now be applied to the problem OD.

Theorem 4-9: (First-order Necessary Con-
ditions): Let all the functions appearing in
OD be differentiable at a point z, & which
satisfies Eqs. 4-13, 4-14, and 4-15. Further,
let the vectors, (Eqs. 4-19, 4-20, and 4-21) be

4-10

lincarly independent at z,b. Then there exist
multipliers AeR" and ueR™, with & > 0 such
that for

H=£zb) + N h(z,b) +uTo(z,b)  (421)

W zh=0 422

55 (z,b) = (4-22)

W Ep=0 423

32 (4-23)
and

wo,(2,6)=0,j=1,.. m. (4-24)

The proof of this theorem may be con-
structed by simply writing down the
necessary conditions of Theorem 4-5 in terms
of x and then separating the components of x
asin Eq. 4-18.

In exactly the same way the second-order
necessary and sufficient conditions of
Theorems 4-6 and 4-7, respectively, may
be stated for the problem OD. No essential
simplification of the statements of those
theorems occurs, however, so the theorems
are not restated here.

Theorem 4-9, just as Theorem 4-5, is
difficult to use in constructing solutions of
OD. Considerable difficulty arises because one
does not know which of the inequalities in
OD is an equality. For problems with a small
number of inequality constraints this may not
be a difficult obstacle, particularly if the
designer has a good intuitive idea of which
constraints will be equalities. If, on the other
hand, there are a large number of inequality
constraints, then the number of combinations
of constraints which may be equalities is
large. It is, therefore, difficult to determine
just which combinations will be equalities. An



analytic solution is extremely difficult in this
casc.

Rather than attempt to use the nccessary
conditions to construct candidate solutions, a
more direct approach will be followed. The
remainder of this chapter will be decvoted to
direcct methods of solving NLP, NLP', and
OD.

4-3 SEQUENTIALLY UNCONSTRAINED
MINIMIZATION TECHNIQUES (SUMT)

A favorite method of solving difficult
problems, particularly among mathcmaticians,
is to reduce a difficult problem to a sequence
of casy problems. Each of the easy problems
is solved and if thc method is any good, the
scquence of solutions of casy problcms will
converge to the solution of the difficult
problem. As thc title might imply, SUMT
follows just this pattern. It should bc clear
that a central part of this method must be
results which guarantce convergence, at least
in cases where solutions are known to exist.

The method presented here essentially re-
duccs NLP and NLP' to a sequence of
auxiliary problems which may be solved by
the methods of Chaptcr 2. The cost function
of NLP or NLP' is augmented by a function
called a penalty function. The penalty func-
tion is formed from the constraint functions
in such a way that as a parameter approaches
zcro (or perhaps infinity) the unconstrained
minimum of thc augmented cost function
converges to the solution of NLP or NLP'.
Two basically differcnt ways of doing this are
prescnted here. Each has its computational
and theoretical advantages and disadvantages
that will be described later.

Due to the large body of theory concerning
SUMT, results will be presented in this para-
graph without proof. The reader is referred
for proofs and an extended discussion of
SUMT to the complete and well-written text
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of Fiacco and McCormick (Ref. 1). Theoret-
ical results guarantceing convergence are
prcsented here to indicate the level of the
known theory of SUMT, rather than as a
complete treatment of the subject.

4-3.1 INTERIOR METHOD

The interior SUMT is based on the idea of
using the constraint functions to erect a
barricr at the boundary of the constraint set
D of NLP by adding a penalty function to
f{x) which approachgcs infinity as thc bound-
ary of D is approached from the interior.
Once the solution of the augmentcd problem
is obtained, the pcnalty function is altered so
as to effect f(x) less in the interior of D.This
behavior is illustrated in Fig. 4-3.

f(x} +Penalty Function (1) { ’

\ T

\ m

) \\ /'i
]

/I

)

\ _
l, Penalty \__ 1%,
\

Function (1) ]

N\ 7/

(A)

Jfx] + Penalty
Function (2)

Penalty
Function (2)

(B}

Figure 4-3, Penalty Functions



AMCP 706-192

As illustrated in Fig. 4-3, when the penalty
function is decreased on the interior of D, the
minimum of the second augmented cost
function x(2) is closer to the solution x than
the minimum of the first augmented cost
function =fl). The idea, of course, is that the
sequence of points x{*) generated in this way
converges to x.

It should be clear why this approach is
discussed only for NLP and not NLP'. The
constraint set of NLP' can have no interior
due to the equality constraints. It is possible
that NLP has no interior and in this case the
interior SUMT is not applicable. In what
follows, it is assumed that the constraint set D
of NLP has an interior.

The sequence of points x) which is to
converge to the minimum point is generated
by minimizing

f(x) +S8(rp) Ix) (4-25)

without regard to constraints, where S(r;) /(x)
is continuous for x in the interior of D and
S(r,) I(X) = + oo for any X such that g].(JE) =0
forany 1a /< m. It is clear that if one begins
an iterative minimization technique of Chap-
ter 2 at a point in the interior of D, then a
relative minimum point will be found which
must lie in the interior of D. Otherwise, the
minimizing sequence would have had to climb
over a portion of the auxiliary cost surface
that is infinitely high and none of the
methods will do this.

In order to obtain the sequence of points
xD, the parameter r, is allowed to approach
zero. To insure that the sequence x(? con-
verges to a relative minimum point, the
functions /(x) and S(r) are required to have
the following properties:

1. I{x) is continnous and non-negative on
the interior of the constraint set D and if

( <M is any sequence of points in R”
converging to x where g].(x) = 0 for some j,
then M7 Kx ky=+oo,

2. S(r) is continuous and if r; > r, > 0,
then S(r;)> S(r;) 0and ifr, isa sequence
of numbers converging to zero, then i™ S(r,)

[— e
=0.

Probably the most common penalty func-
tions I(x) and S(r) are

I(xy=— B -

) i=1 g;(x) (420
and

S =r. (4-27)

Any pair of functions satisfying properties
No. 1 and No. 2 associated with Eq. 4-25,
however, is suitable. It may be to the
designer's advantage to choose another form
for any particular problem. For other suitable
choices of penalty functions, see Ref. 1, page
68.

The algorithm for solving NLP by the
interior point technique is given in Definition
4-7.

Definition 4-7: The interior point sequen-
tially unconstrained minimization algorithm is
given by the following:

Step 1. Define the function

Ux,r)=f(x)+8@) I(x), (4-28)



where S(r) and f(x) satisfy prop-
erties No. 1 and No. 2. Choose 7,
> 0 and x(® in the interior of the
constraint set D.

Step 2. Beginning atx‘®) minimize U(x,7;)
without regard to constraints to
obtain x{(1). Any of the methods
of Chapter 2 may be employed for
this purpose.

Step 3. For i=0,1,2, ..., choose?; . > 0
such that », - ; < r, Beginning at
xD minimize Ulx,r; 1) without
regard to constraints to obtain
x* 1) where i is the iteration in-
dex.

Step4. As r, = oo, if | x0+ 1) —x() || and
[ fIxG* D]—f[xD] | are suffi-
ciently small, terminate the process
and take xU' * 17 as the solution of
NLP. Otherwise return to Step 3.

In order to be sure that this algorithm will
lead to a solution of NLP, one would like to
have a result that as r, —~ 0, a solution is
approached. Such a result is contained in
Theorem 4-10.

Theorem 4-10: In the interior point
algorithm just given let:

f(x), g, x), ..., g,(x) be con-
tinuous on the constraint set D, 4-29

S(») and f(x) satisfy properties No.
1 and No. 2, (4-30)

The interior of D be nonempty, 4-31)
There be a relative minimum point

x inD such that f(xX) < f(x) for all x
# X in some neighborhood of x,
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where x is not an isolated point of
D, (4-32)

{ r, } be a strictly decreasing
sequence which converges to zero. (4-33)

Then for x(°) sufficiently near X
and r; sufficiently small,

Jmox® = x. (4-34)
Further,
M Sy [1xD] =0 (4-35)

A fx0y = I gx@ g = f(x)
(4-36)

{ F1xD ]} is monotone decreasing (4-37)
and

{I [x(i)] } is monotone increasing. (4-38)

For proof of this theorem see Ref. 1, page
47,

It has been noted throughout the previous
development that if NLP is convex — i.e.,
fx), g, (x),....8,(x) are convex — then

nice” things happen: One of these “nice”
things is given in Theorem 4-11.

Theorem 4-11: If NLP is convex with a
unique minimum point X, gx)j=1,...m,
are twice continuously differentiable, and if
Eqs. 4-29 through 4-33 hold, then x* gen-
erated by the given algorithm will converge to
the minimum point.

It should be noted that Step 1 of the
algorithm (Def. 4-7) required a point x(®) in

4-13
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the interior of the constraint set but no
method of obtaining such a point was given.
This question will be addressed later in this
paragraph.

Example 4-3: Solve the LP
flxy,x,) = x; +x, = minimum
g(x, ,x,) = —x; < 0
gz(xl,xz) = _ X, < 0

using the interior point SUMT.

Solution:

1 1
UGr) =x; +x, —r |:—x—' - ——J .

1 %2

The functions f(x), g,(x), and g,(x) are
convex and by Theorem A-5, Appendix
A, soare — 1/g, (x)and 1/g,(x). Since r > 0,
U(x,r) is convex and thus has a unique
minimum. To find it, put

oU 0=1 r

axl (xl)2

ol r

_ = O =1 — 3

ax2 (x2)
SO

X, = rl/2

x, = rif2

2

Asy— 0,x;, ~ 0 and x, — 0 so the solution
of Example 4-3 is

(x;,x,) =(0,0).

4-14

4-3.2 EXTERIOR METHOD

Unlike the interior method, starting points
for the exterior SUMT are not required to be
in the constraint set of NLP. The basic idea in
the exterior method is to add to the cost
function a penalty function that is positive
for points outside the constraint set and zero
inside the constraint set. This,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>